Skip to main content
Log in

Organic acidurias in adults: late complications and management

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids (“organic acids”) and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be “metabolically stable”. This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

CRF:

Chronic renal failure

EO:

Early (i.e. neonatal) disease onset

GA1:

Glutaric aciduria type 1

IVA:

Isovaleric aciduria

LO:

Late disease onset (i.e. after the newborn period)

MRI:

Magnetic resonance imaging

MMA:

Isolated methylmalonic aciduria

OAD(s):

Organic aciduria(s)

PA:

Propionic aciduria

QTc :

Corrected QT interval

References

  • Arias C, Raimann E, Peredo P et al (2014) Propionic acidemia and optic neuropathy: a report of two cases. JIMD Rep 12:1–4

    PubMed  Google Scholar 

  • Arrizza C, De Gottardi A, Foglia E, Baumgartner M, Gautschi M, Nuoffer JM (2015) Reversal of cardiomyopathy in propionic acidemia after liver transplantation: a 10-year follow-up. Transpl Int 28:1447–1450

    Article  PubMed  Google Scholar 

  • Azar MR, Shakiba M, Tafreshi RI, Rashed MS (2007) Heart failure in a patient with methylmalonic acidemia. Mol Genet Metab 92:188

    Article  CAS  PubMed  Google Scholar 

  • Bahr O, Mader I, Zschocke J, Dichgans J, Schulz JB (2002) Adult onset glutaric aciduria type I presenting with a leukoencephalopathy. Neurology 59:1802–1804

    Article  CAS  PubMed  Google Scholar 

  • Baker EH, Sloan JL, Hauser NS et al (2015) MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol 36:194–201

    Article  CAS  PubMed  Google Scholar 

  • Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF (1999) Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis 22:867–881

    Article  CAS  PubMed  Google Scholar 

  • Barshes NR, Vanatta JM, Patel AJ et al (2006) Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant 10:773–781

    Article  PubMed  Google Scholar 

  • Baumgartner D, Scholl-Burgi S, Sass JO et al (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr 150:192–197

    Article  PubMed  Google Scholar 

  • Baumgartner MR, Horster F, Dionisi-Vici C et al (2014) Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 9:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Biagosch C, Ediga RD, Hensler SV et al (2017) Elevated glutaric acid levels in Dhtkd1−/Gcdh- double knockout mice challenge our current understanding of lysine metabolism. Biochim Biophys Acta 1863:2220–2228

    Article  CAS  Google Scholar 

  • Boy N, Heringer J, Haege G et al (2015) A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I. Orphanet J Rare Dis 10:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Boy N, Heringer J, Brackmann R et al (2017a) Extrastriatal changes in patients with late-onset glutaric aciduria type I highlight the risk of long-term neurotoxicity. Orphanet J Rare Dis 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Boy N, Muhlhausen C, Maier EM et al (2017b) Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 40:75–101

    Article  PubMed  Google Scholar 

  • Brassier A, Boyer O, Valayannopoulos V et al (2013) Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease. Mol Genet Metab 110:106–110

    Article  CAS  PubMed  Google Scholar 

  • Brismar J, Ozand PT (1995) CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol 16:675–683

    CAS  PubMed  Google Scholar 

  • Castelnovi C, Moseley K, Yano S (2010) Maternal isovaleric acidemia: observation of distinctive changes in plasma amino acids and carnitine profiles during pregnancy. Clin Chim Acta 411:2101–2103

    Article  CAS  PubMed  Google Scholar 

  • Chapman KA, Summar ML, Enns GM (2012) Propionic acidemia: to liver transplant or not to liver transplant? Pediatr Transplant 16:209–210

    Article  PubMed  Google Scholar 

  • Charbit-Henrion F, Lacaille F, McKiernan P et al (2015) Early and late complications after liver transplantation for propionic acidemia in children: a two centers study. Am J Transplant 15:786–791

    Article  CAS  PubMed  Google Scholar 

  • Christensen E, Ribes A, Merinero B, Zschocke J (2004) Correlation of genotype and phenotype in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:861–868

    Article  CAS  PubMed  Google Scholar 

  • Couce ML, Lopez-Suarez O, Boveda MD et al (2013) Glutaric aciduria type I: outcome of patients with early- versus late-diagnosis. Eur J Paediatr Neurol 17:383–389

    Article  PubMed  Google Scholar 

  • Coude FX, Sweetman L, Nyhan WL (1979) Inhibition by propionyl-coenzyme a of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 64:1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coude FX, Ogier H, Grimber G et al (1982) Correlation between blood ammonia concentration and organic acid accumulation in isovaleric and propionic acidemia. Pediatrics 69:115–117

    CAS  PubMed  Google Scholar 

  • Crombez EA, Cederbaum SD, Spector E et al (2008) Maternal glutaric acidemia, type I identified by newborn screening. Mol Genet Metab 94:132–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rivero Vaccari JP, Patel HH, Brand FJ III, Perez-Pinzon MA, Bramlett HM, Raval AP (2016) Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats. J Neurochem 136:492–496

    Article  CAS  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142C:104–112

    Article  CAS  PubMed  Google Scholar 

  • Dionisi-Vici C, Deodato F, Roschinger W, Rhead W, Wilcken B (2006) ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 29:383–389

    Article  CAS  PubMed  Google Scholar 

  • du Moulin M, Thies B, Blohm M, et al (2017) Glutaric aciduria type 1 and acute renal failure: case report and suggested pathomechanisms. JIMD Rep. https://doi.org/10.1007/8904_2017_44

  • Ensenauer R, Vockley J, Willard JM et al (2004) A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 75:1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagiuoli S, Daina E, D’Antiga L, Colledan M, Remuzzi G (2013) Monogenic diseases that can be cured by liver transplantation. J Hepatol 59:595–612

    Article  PubMed  Google Scholar 

  • Feinstein JA, O’Brien K (2003) Acute metabolic decompensation in an adult patient with isovaleric acidemia. South Med J 96:500–503

    Article  PubMed  Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York

    Google Scholar 

  • Fowler B, Leonard JV, Baumgartner MR (2008) Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis 31:350–360

    Article  CAS  PubMed  Google Scholar 

  • Fragaki K, Cano A, Benoist JF et al (2011) Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic acidemia. Mitochondrion 11:533–536

    Article  CAS  PubMed  Google Scholar 

  • Fraidakis MJ, Liadinioti C, Stefanis L et al (2015) Rare late-onset presentation of glutaric aciduria type I in a 16-year-old woman with a novel GCDH mutation. JIMD Rep 18:85–92

    Article  CAS  PubMed  Google Scholar 

  • Fraser JL, Venditti CP (2016) Methylmalonic and propionic acidemias: clinical management update. Curr Opin Pediatr 28:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia P, Martins E, Diogo L et al (2008) Outcome of three cases of untreated maternal glutaric aciduria type I. Eur J Pediatr 167:569–573

    Article  PubMed  Google Scholar 

  • Gitiaux C, Roze E, Kinugawa K et al (2008) Spectrum of movement disorders associated with glutaric aciduria type 1: a study of 16 patients. Mov Disord 23:2392–2397

    Article  PubMed  Google Scholar 

  • Grunert SC, Wendel U, Lindner M et al (2012) Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J Rare Dis 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunert SC, Bodi I, Odening KE (2017) Possible mechanisms for sensorineural hearing loss and deafness in patients with propionic acidemia. Orphanet J Rare Dis 12:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haarmann A, Mayr M, Kolker S et al (2013) Renal involvement in a patient with cobalamin a type (cblA) methylmalonic aciduria: a 42-year follow-up. Mol Genet Metab 110:472–476

    Article  CAS  PubMed  Google Scholar 

  • Habets DD, Schaper NC, Rogozinski H et al (2012) Biochemical monitoring and management during pregnancy in patients with isovaleric acidaemia is helpful to prevent metabolic decompensation. JIMD Rep 3:83–89

    Article  CAS  PubMed  Google Scholar 

  • Harting I, Neumaier-Probst E, Seitz A et al (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132:1764–1782

    Article  PubMed  Google Scholar 

  • Harting I, Boy N, Heringer J et al (2015) (1)H-MRS in glutaric aciduria type 1: impact of biochemical phenotype and age on the cerebral accumulation of neurotoxic metabolites. J Inherit Metab Dis 38:829–838

    Article  CAS  PubMed  Google Scholar 

  • Heringer J, Boy SP, Ensenauer R et al (2010) Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol 68:743–752

    Article  PubMed  Google Scholar 

  • Heringer J, Valayannopoulos V, Lund AM et al (2016) Impact of age at onset and newborn screening on outcome in organic acidurias. J Inherit Metab Dis 39:341–353

    Article  PubMed  Google Scholar 

  • Herskovitz M, Goldsher D, Sela BA, Mandel H (2013) Subependymal mass lesions and peripheral polyneuropathy in adult-onset glutaric aciduria type I. Neurology 81:849–850

    Article  PubMed  Google Scholar 

  • Horster F, Baumgartner MR, Viardot C et al (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res 62:225–230

    Article  PubMed  Google Scholar 

  • Horster F, Garbade SF, Zwickler T et al (2009) Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis 32:630–639

    Article  CAS  PubMed  Google Scholar 

  • Horster F, Kolker S, Loeber JG, Cornel MC, Hoffmann GF, Burgard P (2017) Newborn screening programmes in Europe, arguments and efforts regarding harmonisation: focus on organic Acidurias. JIMD Rep 32:105–115

    Article  PubMed  Google Scholar 

  • Ianchulev T, Kolin T, Moseley K, Sadun A (2003) Optic nerve atrophy in propionic acidemia. Ophthalmology 110:1850–1854

    Article  PubMed  Google Scholar 

  • Jacquemyn Y, Den Hartog M, Eyskens F (2014) Methylmalonic acidaemia in pregnancy. BMJ Case Rep. https://doi.org/10.1136/bcr-2014-203723

  • Jameson E, Walter J (2008) Cardiac arrest secondary to long QT(C )in a child with propionic acidemia. Pediatr Cardiol 29:969–970

    Article  PubMed  Google Scholar 

  • Kahler SG, Sherwood WG, Woolf D et al (1994) Pancreatitis in patients with organic acidemias. J Pediatr 124:239–243

    Article  CAS  PubMed  Google Scholar 

  • Kakavand B, Schroeder VA, Di Sessa TG (2006) Coincidence of long QT syndrome and propionic acidemia. Pediatr Cardiol 27:160–161

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Sakamoto S, Kanazawa H et al (2012) Living-donor liver transplantation for propionic acidemia. Pediatr Transplant 16:230–234

    Article  CAS  PubMed  Google Scholar 

  • Kimmoun A, Abboud G, Strazeck J, Merten M, Gueant JL, Feillet F (2008) Acute decompensation of isovaleric acidemia induced by Graves’ disease. Intensive Care Med 34:2315–2316

    Article  PubMed  Google Scholar 

  • Kolker S, Pawlak V, Ahlemeyer B et al (2002) NMDA receptor activation and respiratory chain complex V inhibition contribute to neurodegeneration in d-2-hydroxyglutaric aciduria. Eur J Neurosci 16:21–28

    Article  PubMed  Google Scholar 

  • Kolker S, Garbade SF, Greenberg CR et al (2006) Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res 59:840–847

    Article  PubMed  Google Scholar 

  • Kolker S, Garbade SF, Boy N et al (2007) Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany. Pediatr Res 62:357–363

    Article  CAS  PubMed  Google Scholar 

  • Kolker S, Garcia-Cazorla A, Valayannopoulos V et al (2015a) The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 38:1041–1057

    Article  CAS  PubMed  Google Scholar 

  • Kolker S, Valayannopoulos V, Burlina AB et al (2015b) The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis 38:1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Korman SH, Jakobs C, Darmin PS et al (2007) Glutaric aciduria type 1: clinical, biochemical and molecular findings in patients from Israel. Eur J Paediatr Neurol 11:81–89

    Article  PubMed  Google Scholar 

  • Kulkens S, Harting I, Sauer S et al (2005) Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency. Neurology 64:2142–2144

    Article  CAS  PubMed  Google Scholar 

  • Lam C, Desviat LR, Perez-Cerda C, Ugarte M, Barshop BA, Cederbaum S (2011) 45-year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab 103:338–340

    Article  CAS  PubMed  Google Scholar 

  • Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Muhlhausen C (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 286:17777–17784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langendonk JG, Roos JC, Angus L et al (2012) A series of pregnancies in women with inherited metabolic disease. J Inherit Metab Dis 35:419–424

    Article  PubMed  Google Scholar 

  • Lee CS, Chien YH, Peng SF et al (2013) Promising outcomes in glutaric aciduria type I patients detected by newborn screening. Metab Brain Dis 28:61–67

    Article  CAS  PubMed  Google Scholar 

  • Leonard JV, Walter JH, McKiernan PJ (2001) The management of organic acidaemias: the role of transplantation. J Inherit Metab Dis 24:309–311

    Article  CAS  PubMed  Google Scholar 

  • Lewey J, Haythe J (2014) Cardiomyopathy in pregnancy. Semin Perinatol 38:309–317

    Article  PubMed  Google Scholar 

  • Loeber JG, Burgard P, Cornel MC et al (2012) Newborn screening programmes in Europe; arguments and efforts regarding harmonization. Part 1. From blood spot to screening result. J Inherit Metab Dis 35:603–611

    Article  PubMed  Google Scholar 

  • Mardach R, Verity MA, Cederbaum SD (2005) Clinical, pathological, and biochemical studies in a patient with propionic acidemia and fatal cardiomyopathy. Mol Genet Metab 85:286–290

    Article  CAS  PubMed  Google Scholar 

  • Marquard J, El Scheich T, Klee D et al (2011) Chronic pancreatitis in branched-chain organic acidurias--a case of methylmalonic aciduria and an overview of the literature. Eur J Pediatr 170:241–245

    Article  PubMed  Google Scholar 

  • Martinez Alvarez L, Jameson E, Parry NR, Lloyd C, Ashworth JL (2016) Optic neuropathy in methylmalonic acidemia and propionic acidemia. Br J Ophthalmol 100:98–104

    Article  PubMed  Google Scholar 

  • Martin-Hernandez E, Lee PJ, Micciche A, Grunewald S, Lachmann RH (2009) Long-term needs of adult patients with organic acidaemias: outcome and prognostic factors. J Inherit Metab Dis 32:523–533

    Article  CAS  PubMed  Google Scholar 

  • McClelland VM, Bakalinova DB, Hendriksz C, Singh RP (2009) Glutaric aciduria type 1 presenting with epilepsy. Dev Med Child Neurol 51:235–239

    Article  PubMed  Google Scholar 

  • Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46

    Article  CAS  PubMed  Google Scholar 

  • Moammar H, Cheriyan G, Mathew R, Al-Sannaa N (2010) Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983-2008. Ann Saudi Med 30:271–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Moorthie S, Cameron L, Sagoo GS, Bonham JR, Burton H (2014) Systematic review and meta-analysis to estimate the birth prevalence of five inherited metabolic diseases. J Inherit Metab Dis 37:889–898

    Article  CAS  PubMed  Google Scholar 

  • Morath MA, Okun JG, Muller IB et al (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria--a pathophysiological approach. J Inherit Metab Dis 31:35–43

    Article  CAS  PubMed  Google Scholar 

  • Morath MA, Horster F, Sauer SW (2013) Renal dysfunction in methylmalonic acidurias: review for the pediatric nephrologist. Pediatr Nephrol 28:227–235

    Article  PubMed  Google Scholar 

  • Morris AA, Hoffmann GF, Naughten ER, Monavari AA, Collins JE, Leonard JV (1999) Glutaric aciduria and suspected child abuse. Arch Dis Child 80:404–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlhausen C, Ott N, Chalajour F et al (2006) Endothelial effects of 3-hydroxyglutaric acid: implications for glutaric aciduria type I. Pediatr Res 59:196–202

    Article  PubMed  Google Scholar 

  • Mutze U, Roth A, Weigel JF et al (2011) Transition of young adults with phenylketonuria from pediatric to adult care. J Inherit Metab Dis 34:701–709

    Article  PubMed  Google Scholar 

  • Mutze U, Thiele AG, Baerwald C, Ceglarek U, Kiess W, Beblo S (2016) Ten years of specialized adult care for phenylketonuria - a single-centre experience. Orphanet J Rare Dis 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagao M, Tanaka T, Morii M, Wakai S, Horikawa R, Kasahara M (2013) Improved neurologic prognosis for a patient with propionic acidemia who received early living donor liver transplantation. Mol Genet Metab 108:25–29

    Article  CAS  PubMed  Google Scholar 

  • Naughten ER, Mayne PD, Monavari AA, Goodman SI, Sulaiman G, Croke DT (2004) Glutaric aciduria type I: outcome in the Republic of Ireland. J Inherit Metab Dis 27:917–920

    Article  CAS  PubMed  Google Scholar 

  • Niemi AK, Kim IK, Krueger CE et al (2015) Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr 166(1455–1461):e1451

    Google Scholar 

  • Nizon M, Ottolenghi C, Valayannopoulos V et al (2013) Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis 8:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Okun JG, Horster F, Farkas LM et al (2002) Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 277:14674–14680

    Article  CAS  PubMed  Google Scholar 

  • Pena L, Franks J, Chapman KA et al (2012) Natural history of propionic acidemia. Mol Genet Metab 105:5–9

    Article  CAS  PubMed  Google Scholar 

  • Pierson TM, Nezhad M, Tremblay MA et al (2015) Adult-onset glutaric aciduria type I presenting with white matter abnormalities and subependymal nodules. Neurogenetics 16:325–328

    Article  CAS  PubMed  Google Scholar 

  • Pinar-Sueiro S, Martinez-Fernandez R, Lage-Medina S, Aldamiz-Echevarria L, Vecino E (2010) Optic neuropathy in methylmalonic acidemia: the role of neuroprotection. J Inherit Metab Dis 33(Suppl 3):S199–S203

    Article  PubMed  Google Scholar 

  • Pinto A, Daly A, Evans S et al (2017) Dietary practices in isovaleric acidemia: a European survey. Mol Genet Metab Rep 12:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitchumoni CS, Arguello P, Agarwal N, Yoo J (1996) Acute pancreatitis in chronic renal failure. Am J Gastroenterol 91:2477–2482

    CAS  PubMed  Google Scholar 

  • Pode-Shakked B, Marek-Yagel D, Rubinshtein M et al (2014) Glutaric Aciduria type I and acute renal failure - coincidence or causality? Mol Genet Metab Rep 1:170–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poge AP, Autschbach F, Korall H, Trefz FK, Mayatepek E (1997) Early clinical manifestation of glutaric aciduria type I and nephrotic syndrome during the first months of life. Acta Paediatr 86:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Prada CE, Al Jasmi F, Kirk EP et al (2011) Cardiac disease in methylmalonic acidemia. J Pediatr 159:862–864

    Article  PubMed  Google Scholar 

  • Radmanesh A, Zaman T, Ghanaati H, Molaei S, Robertson RL, Zamani AA (2008) Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature. Pediatr Radiol 38:1054–1061

    Article  PubMed  Google Scholar 

  • Raval DB, Merideth M, Sloan JL et al (2015) Methylmalonic acidemia (MMA) in pregnancy: a case series and literature review. J Inherit Metab Dis 38:839–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravn K, Chloupkova M, Christensen E et al (2000) High incidence of propionic acidemia in greenland is due to a prevalent mutation, 1540insCCC, in the gene for the beta-subunit of propionyl CoA carboxylase. Am J Hum Genet 67:203–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rela M, Battula N, Madanur M et al (2007) Auxiliary liver transplantation for propionic acidemia: a 10-year follow-up. Am J Transplant 7:2200–2203

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez M, Castellano-Martinez A (2016) Long QTc syndrome and Propionic Acidemia. Indian Pediatr 53:841

    PubMed  Google Scholar 

  • Romano S, Valayannopoulos V, Touati G et al (2010) Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr 156:128–134

    Article  PubMed  Google Scholar 

  • Ruppert T, Schumann A, Grone HJ et al (2015) Molecular and biochemical alterations in tubular epithelial cells of patients with isolated methylmalonic aciduria. Hum Mol Genet 24:7049–7059

    CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Schwab MA et al (2005) Bioenergetics in glutaryl-coenzyme a dehydrogenase deficiency: a role for glutaryl-coenzyme a. J Biol Chem 280:21830–21836

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Fricker G et al (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97:899–910

    Article  CAS  PubMed  Google Scholar 

  • Sauer SW, Okun JG, Hoffmann GF, Koelker S, Morath MA (2008) Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim Biophys Acta 1777:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Schlenzig JS, Poggi-Travert F, Laurent J et al (1995) Liver transplantation in two cases of propionic acidaemia. J Inherit Metab Dis 18:448–461

    Article  CAS  PubMed  Google Scholar 

  • Schmitt CP, Mehls O, Trefz FK, Horster F, Weber TL, Kolker S (2004) Reversible end-stage renal disease in an adolescent patient with methylmalonic aciduria. Pediatr Nephrol 19:1182–1184

    PubMed  Google Scholar 

  • Schwab MA, Sauer SW, Okun JG et al (2006) Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 398:107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott Schwoerer J, van Calcar S, Rice GM, Deline J (2016) Successful pregnancy and delivery in a woman with propionic acidemia from the Amish community. Mol Genet Metab Rep 8:4–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Shchelochkov OA, Dickinson K, Scharschmidt BF, Lee B, Marino M, Le Mons C (2016) Barriers to drug adherence in the treatment of urea cycle disorders: assessment of patient, caregiver and provider perspectives. Mol Genet Metab Rep 8:43–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sloan JL, Manoli I, Venditti CP (2015) Liver or combined liver-kidney transplantation for patients with isolated methylmalonic acidemia: who and when? J Pediatr 166:1346–1350

    Article  PubMed  Google Scholar 

  • Spinty S, Rogozinski H, Lealman GT, Wraith JE (2002) Second case of a successful pregnancy in maternal isovaleric acidaemia. J Inherit Metab Dis 25:697–698

    Article  CAS  PubMed  Google Scholar 

  • Stellmer F, Keyser B, Burckhardt BC et al (2007) 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. J Mol Med (Berl) 85:763–770

    Article  CAS  Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL, Morton DH (2003) Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet 121C:38–52

    Article  PubMed  Google Scholar 

  • Strauss KA, Donnelly P, Wintermark M (2010) Cerebral haemodynamics in patients with glutaryl-coenzyme a dehydrogenase deficiency. Brain 133:76–92

    Article  PubMed  Google Scholar 

  • Strauss KA, Brumbaugh J, Duffy A et al (2011) Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx. Mol Genet Metab 104:93–106

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Budd MA, Efron ML, Isselbacher KJ (1966) Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A 56:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thies B, Meyer-Schwesinger C, Lamp J et al (2013) Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1. Biochim Biophys Acta 1832:1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Traber G, Baumgartner MR, Schwarz U, Pangalu A, Donath MY, Landau K (2011) Subacute bilateral visual loss in methylmalonic acidemia. J Neuroophthalmol 31:344–346

    Article  PubMed  Google Scholar 

  • Tuncel AT, Ruppert T, Wang BT et al (2015) Maleic acid--but not structurally related Methylmalonic acid--interrupts energy metabolism by impaired calcium homeostasis. PLoS One 10:e0128770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugarte M, Perez-Cerda C, Rodriguez-Pombo P et al (1999) Overview of mutations in the PCCA and PCCB genes causing propionic acidemia. Hum Mutat 14:275–282

    Article  CAS  PubMed  Google Scholar 

  • Van Calcar SC (2015) Nutrition management during pregnancy: maple syrup urine disease, propionic acidemia, methylmalonic acidemia and urea cycle disorders. In: Bernstein L, Rohr F, Helm J (eds) Nutrition management of inherited metabolic diseases. Springer, Cham, p 229–240

  • Van Calcar SC, Harding CO, Davidson SR, Barness LA, Wolff JA (1992) Case reports of successful pregnancy in women with maple syrup urine disease and propionic acidemia. Am J Med Genet 44:641–646

    Article  PubMed  Google Scholar 

  • Vara R, Turner C, Mundy H et al (2011) Liver transplantation for propionic acidemia in children. Liver Transpl 17:661–667

    Article  PubMed  Google Scholar 

  • Vernon HJ, Bagnasco S, Hamosh A, Sperati CJ (2014) Chronic kidney disease in an adult with propionic acidemia. JIMD Rep 12:5–10

    Article  CAS  PubMed  Google Scholar 

  • Vester ME, Bilo RA, Karst WA, Daams JG, Duijst WL, van Rijn RR (2015) Subdural hematomas: glutaric aciduria type 1 or abusive head trauma? A systematic review. Forensic Sci Med Pathol 11:405–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Vester ME, Visser G, Wijburg FA, van Spronsen FJ, Williams M, van Rijn RR (2016) Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients. Eur J Pediatr 175:1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viau K, Ernst SL, Vanzo RJ, Botto LD, Pasquali M, Longo N (2012) Glutaric acidemia type 1: outcomes before and after expanded newborn screening. Mol Genet Metab 106:430–438

    Article  CAS  PubMed  Google Scholar 

  • Vilarinho L, Rocha H, Sousa C et al (2010) Four years of expanded newborn screening in Portugal with tandem mass spectrometry. J Inherit Metab Dis 33(Suppl 3):S133–S138

    Article  PubMed  Google Scholar 

  • Vockley J, Ensenauer R (2006) Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet 142C:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ZR, Hurley PE, Altiparmak UE et al (2009) Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol 147:929–933

    Article  CAS  PubMed  Google Scholar 

  • Witters P, Debbold E, Crivelly K et al (2016) Autism in patients with propionic acidemia. Mol Genet Metab 119:317–321

    Article  CAS  PubMed  Google Scholar 

  • Zielonka M, Braun K, Bengel A, Seitz A, Kolker S, Boy N (2015) Severe acute subdural hemorrhage in a patient with glutaric aciduria type I after minor head trauma: a case report. J Child Neurol 30:1065–1069

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kölker.

Ethics declarations

Conflict of interest

A. T. Tuncel, N. Boy, M. A. Morath, F. Hörster, and U. Mütze declare that they have no conflict of interest.

Stefan Kölker has received speaker honorarium from Vitaflo, Nutricia (Danone group) and Orphan Europe (Recordati group) and has received project grants from Horizon Pharma International Limited and Orphan Europe SARL (Recordati group).

Informed consent

Not applicable.

Animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Communicated by: Manuel Schiff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncel, A.T., Boy, N., Morath, M.A. et al. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 41, 765–776 (2018). https://doi.org/10.1007/s10545-017-0135-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0135-2

Keywords

Navigation