Skip to main content
Log in

Causes of and diagnostic approach to methylmalonic acidurias

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Several mutant genetic classes that cause isolated methylmalonic acidurias (MMAuria) are known based on biochemical, enzymatic and genetic complementation analysis. The mut0 and mut defects result from deficiency of MMCoA mutase apoenzyme which requires adenosyl-cobalamin (Ado-Cbl) as coenzyme. The cblA, cblB and the variant 2 form of cblD complementation groups are linked to processes unique to Ado-Cbl synthesis. The cblC, cblD and cblF complementation groups are associated with defective methyl-cobalamin synthesis as well. Mutations in the genes associated with most of these defects have been described. Recently a few patients have been described with mild MMAuria associated with mutations of the MMCoA epimerase gene or with neurological symptoms due to SUCL mutations. A comprehensive diagnostic approach involves investigations at the level of metabolites, genetic complementation analysis and enzymatic studies, and finally mutation analysis. MMA levels in urine range from 10–20 mmol/mol creatinine in mild disturbances of MMA metabolism to over 20000 mmol/mol creatinine in severe MMCoA mutase deficiency, but show considerable overlap and are of limited value for differential diagnosis. The underlying defect in isolated MMAuria can be characterized in cultured skin fibroblasts using several assays, e.g. conversion of propionate to succinate, specific activity of MMCoA, cobalamin adenosyltransferase assay, cellular uptake of CN-[57Co] cobalamin and its conversion to cobalamin coenzymes and complementation analysis. The reliable characterization of patients with isolated MMAuria pinpoints the correct gene for mutation analysis. Reliable classification of these patients is essential for ongoing and future prospective studies on treatment and outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee R (2006) B12 trafficking in mammals: a case for coenzyme escort service. ACS Chem Biol 1: 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner R (1983) Activity of the cobalamin-dependent methylmalonyl-CoA mutase. In: Hall CA, ed. The Cobalamins, Methods in Hematology, vol. 10, Edinburgh, New York: Churchill Livingston, 181–195.

    Google Scholar 

  • Bikker H, Bakker HD Abeling NGGM, et al (2006) A homozygous missense mutation in the methylmalonyl-CoA epimerase gene (MCEE) results in mild methylmalonic aciduria. Hum Mutat 27: 640–643.

    Article  CAS  PubMed  Google Scholar 

  • Boulat O, Gradwohl M, Matos V, Guignard JP, Bachmann C (2003) Organic acids in the second morning urine in healthy Swiss paediatric population. Clin Chem Lab Med 41: 1642–1658.

    Article  CAS  PubMed  Google Scholar 

  • Carrozzo R, Dionisi-Vici C, Steuerwald U, et al (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, leigh-like encephalomyopathy, dystonia and deafness. Brain 130: 862–874.

    Article  PubMed  Google Scholar 

  • Chandler RJ, Sloan J, Fu H, et al (2007) Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC Med Genet 8: 64 [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  • Coelho D, Suormala T, Stucki M, et al (2008) Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med 358: 1454–1464.

    Google Scholar 

  • Dobson MC, Wai T, Leclerc D, et al (2002a) Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. PNAS 99: 15554–15559.

    Article  CAS  PubMed  Google Scholar 

  • Dobson MC, Wai T, Leclerc D, et al (2002b) Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet 11: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  • Dobson MC, Gradinger A, Longo N, et al (2006) Homozygous nonsense mutation in the MCEE gene and siRNA suppression of methylmalonyl-CoA epimerase expression: A novel cause of mild methylmalonic aciduria. Mol Genet Metab 88: 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Elpeleg O, Miller C, Hershkovitz E, et al (2005) Deficiency of ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial depletion. Am J Hum Genet 76: 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Rosenberg LE (1981) The defect in the cbl B class of human methylmalonic acidemia: deficiency of cob(I)alamin adenosyltransferase activity in extracts of cultured fibroblasts. Biochem Biophys Res Commun 98: 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2165–2193.

    Google Scholar 

  • Fowler B, Jakobs C (1998) Post- and prenatal diagnostic methods for the homocystinurias. Eur J Pediatr 157(Supplement 2): S88–93.

    Article  PubMed  Google Scholar 

  • Fowler B, Whitehouse C, Wenzel F, Wraith JE (1997) Methionine and serine formation in control and mutant human cultured fibroblasts: evidence for methyl group trapping and characterisation of remethylation defects. Pediatr Res 41: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Gradinger AB, Bélair C, Worgan LC, et al (2007) Atypical methylmalonic acidurias: frequency of mutations in the methylmalonyl CoA epimerase gene (MCEE). Hum Mutat 28: 1045.

    Article  PubMed  Google Scholar 

  • Hörster F, Baumgartner MR, Viardot C, et al (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut, cblA, cblB). Pediatr Res 62: 225–230.

    Article  PubMed  Google Scholar 

  • Korotkova N, Lidstrom ME (2004) MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J Biol Chem 279: 13652–13658.

    Article  CAS  PubMed  Google Scholar 

  • Ledley FD, Lumetta MR, Zoghbi HY, Van Tuinen P, Ledbetter SA, Ledbetter DH (1988) Mapping of human methylmalonyl CoA mutase (MUT) locus on chromosome 6. Am J Hum Genet 42: 839–846.

    CAS  PubMed  Google Scholar 

  • Lempp TJ, Suormala T, Siegenthaler R, et al (2007) Mutation and biochemical analysis of 19 probands with mut0 and 13 with mut methylmalonic aciduria: Identification of seven novel mutations. Mol Genet Metab 90: 284–290.

    Article  CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Dobson MC, Wai T, et al (2004) Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism. Hum Mutat 24: 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Gradinger AB, Watkins D, et al (2006a) Mutation and biochemical analysis of patients belonging to the cblB complementation class of vitamin B12-dependent methylmalonic acidurias. Mol Genet Metab 87: 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Lerner-Ellis JP, Tirone JC, Pawelek PD, et al (2006b) Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet 38: 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Matsui SM, Mahoney MJ, Rosenberg LE (1983) The natural history of the inherited methylmalonic acidemias. N Engl J Med 308: 857–861.

    CAS  PubMed  Google Scholar 

  • Mayatepek E, Hoffmann GF, Baumgartner R, et al (1996) Atypical vitamin B12-unresponsive methylmalonic aciduria in a sibship with severe progressive encephalomyelopathy: a new genetic disease? Eur J Pediatr 155: 398–403.

    CAS  PubMed  Google Scholar 

  • Merinero B, Pérez B, Pérez-Cerda C, et al (2008) Methylmalonic acidaemia: Examination of genotype and biochemical data in 32 patients belonging to mut, cblA or cblB complementation group. J Inherit Metab Dis 31: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira C, Aiello C, Cerone R, et al (2008) Spectrum of MMACHC mutations in Italian and Portuguese patients with combined methylmalonic aciduria and homocystinuria, cblC type. Mol Genet Metab 93: 475–480.

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard E, Hansen FJ, Sorensen N, et al (2007a) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130: 853–861.

    Article  PubMed  Google Scholar 

  • Ostergaard E, Christensen E, Krsitensen E, et al (2007b) Deficiency of the α subuinit of succinate-CoA ligase causes fatal infantile lactic acidosis with mtDNA depletion. Am J Hum Genet 81: 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Padovani D, Banerjee R (2006) Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochemistry 45: 9300–9306.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg LE, Lilljeqvist A, Hsia YE (1968) Methylmalonic aciduria: metabolic block localization and vitamin B12 dependency. Science 162: 805–807.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt DS, Fenton WA (2001) Inherited disorders of folate and cobalamin transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3897–3933.

    Google Scholar 

  • Saridakis V, Yakunin A, Xu X, Anandakumar P, et al (2004) The structural basis for methylmalonic aciduria. The crystal structure of archaeal ATP: cobalamin adenosyltransferase. JBiol Chem 279: 23646–23653.

    Article  CAS  Google Scholar 

  • Schulze A, Lindner M, Kohlmuller D, Olgemoller K, Mayatepek E, Hoffmann GF (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization–tandem mass spectrometry: results, outcome, and implications. Pediatrics 111: 1399–1406.

    Article  PubMed  Google Scholar 

  • Suormala T, Baumgartner MR, Coelho D, et al (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279: 42742–42749.

    Article  CAS  PubMed  Google Scholar 

  • Watkins D, Matiaszuk N, Rosenblatt DS (2000). Complementation studies in the cblA class of inborn error of cobalamin metabolism: evidence for interallelic complementation and for a new complementation class (cblH). J Med Genet 37: 510–513.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead M (2006) Acquired and inherited disorders of cobalamin and folate in children. Br J Hematol 134: 125–136.

    Article  CAS  Google Scholar 

  • Wilcken B, Wiley V, Hammond J, Carpenter K (2003) Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 348: 2304–2312.

    Article  CAS  PubMed  Google Scholar 

  • Willard HF, Ambani LM, Hart AC, Mahoney MJ, Rosenberg LE (1976) Rapid prenatal and postnatal detection of inborn errors of propionate, methylmalonate and cobalamin metabo-lism. A sensitive assay using cultured cells. Hum Genet 34: 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Worgan LC, Niles K, Tirone JC, et al (2006) Spectrum of mutation in mut methylmaonic acidemia and identification of a common hispanic mutation and haplotype. Hum Mutat 27: 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Yano S, Li L, Le TP, et al (2003) Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype ofmtDNA depletion syndrome. J Inherit Metab Dis 26: 481–488.

    Article  CAS  PubMed  Google Scholar 

  • Zavadakova P, Fowler B, Zeman J, Suormala T, Pristoupilova K, Kozich V (2002) CblE type of homocystinuria due to methionine synthase reductase deficiency: clinical and molecular studies and prenatal diagnosis in two families. JInherit Metab Dis 25: 461–476.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker T, Lindner M, Ibrahim HI, et al (2008) Diagnostic work-up and management of patients with isolated methylmalonic acidurias in European metabolic centres. J Inher Metab Dis. doi:10.1007/s10545-008-0804-2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fowler.

Additional information

Communicating editor: Marinus Duran

Competing interests: None declared

References to electronic databases: Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency, mut0 and mut defects: OMIM 251000. cblA: OMIM 251100. cblB: OMIM 251110. cblD: OMIM 277410. Cobalamin adenosyltransferase: EC 2.5.1.17. MMCoA mutase: EC 5.4.99.2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, B., Leonard, J.V. & Baumgartner, M.R. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis 31, 350–360 (2008). https://doi.org/10.1007/s10545-008-0839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0839-4

Keywords

Navigation