Skip to main content
Log in

Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T)

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  • Ashley GA, Shabbeer J, Yasuda M, Eng CM, Desnick RJ (2001) Fabry disease: twenty novel alpha-galactosidase A mutations causing the classical phenotype. J Hum Genet 46:192–196

    Article  PubMed  CAS  Google Scholar 

  • Blaydon D, Hill J, Winchester B (2001) Fabry disease: 20 novel GLA mutations in 35 families. Hum Mutat 18:459

    Article  PubMed  CAS  Google Scholar 

  • Boerkoel CF, Exelbert R, Nicastri C et al (1995) Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Am J Hum Genet 56:887–897

    PubMed  CAS  Google Scholar 

  • Burlina AP, Manara R, Caillaud C et al (2008) The pulvinar sign: frequency and clinical correlations in Fabry disease. J Neurol 255:738–744

    Article  PubMed  Google Scholar 

  • Davies JP, Eng CM, Hill JA et al (1996) Fabry disease: fourteen alpha-galactosidase A mutations in unrelated families from the United Kingdom and other European countries. Eur J Hum Genet 4:219–224

    PubMed  CAS  Google Scholar 

  • Desnick RJ, Ionnou IA, Eng CM (2001) a-Galactosidase A deficiency: Fabry disease. In: Scriver C, Beaudet A, Sly W (eds) The Metabolic and Molecular Basis of Inherited disease. McGraw-Hill, New York, pp 3733–3774

    Google Scholar 

  • Dobrovolny R, Nazarenko I, Doheny D, Bishop D, Desnick R (2009) Fabry disease: identification of large deletions in a-galactosidase gene, Platform 3040/F-Poster Board 972. 59th Annual Meeting of the American Society of Human Genetics, Honolulu, HI

  • Filoni C, Caciotti A, Carraresi L et al (2010) Functional studies of new GLA gene mutations leading to conformational Fabry disease. Biochim Biophys Acta 1802:247–252

    PubMed  CAS  Google Scholar 

  • Gal A, Hughes DA, Winchester B (2011) Toward a consensus in the laboratory diagnostics of Fabry disease - recommendations of a European expert group. J Inherit Metab Dis 34:509–514

    Article  PubMed  Google Scholar 

  • Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335

    Article  PubMed  CAS  Google Scholar 

  • Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30

    Article  PubMed  Google Scholar 

  • Hermans MM, de GE, Kroos MA, Wisselaar HA, Oostra BA, Reuser AJ (1991) Identification of a point mutation in the human lysosomal alpha-glucosidase gene causing infantile glycogenosis type II. Biochem Biophys Res Commun 179: 919–926

  • Hermans MM, De Graaff E, Kroos MA et al (1993a) The conservative substitution Asp-645-->Glu in lysosomal alpha-glucosidase affects transport and phosphorylation of the enzyme in an adult patient with glycogen-storage disease type II. Biochem J 289(Pt 3):687–693

    PubMed  CAS  Google Scholar 

  • Hermans MM, Kroos MA, de GE, Oostra BA, Reuser AJ (1993b) Two mutations affecting the transport and maturation of lysosomal alpha-glucosidase in an adult case of glycogen storage disease type II. Hum Mutat 2: 268–273

  • Hermans MM, De Graaff E, Kroos MA et al (1994) The effect of a single base pair deletion (delta T525) and a C1634T missense mutation (pro545leu) on the expression of lysosomal alpha-glucosidase in patients with glycogen storage disease type II. Hum Mol Genet 3:2213–2218

    Article  PubMed  CAS  Google Scholar 

  • Hermans MM, Kroos MA, Smeitink JA, van der Ploeg AT, Kleijer WJ, Reuser AJ (1998) Glycogen storage disease type II: genetic and biochemical analysis of novel mutations in infantile patients from Turkish ancestry. Hum Mutat 11:209–215

    Article  PubMed  CAS  Google Scholar 

  • Hermans MM, van Leenen D, Kroos MA et al (2004) Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum Mutat 23:47–56

    Article  PubMed  CAS  Google Scholar 

  • Huie ML, Chen AS, Brooks SS, Grix A, Hirschhorn R (1994) A de novo 13 nt deletion, a newly identified C647W missense mutation and a deletion of exon 18 in infantile onset glycogen storage disease type II (GSDII). Hum Mol Genet 3:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Hwu WL, Chien YH, Lee NC et al (2009) Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 30:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Kase R, Sakuraba H, Suzuki Y (1993) Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of Fabry disease. Biochem Biophys Res Commun 197:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Kase R, Sakuraba H et al (1994) Human alpha-galactosidase gene expression: significance of two peptide regions encoded by exons 1–2 and 6. Biochim Biophys Acta 1204:265–270

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Kase R, Okumiya T, Sakuraba H, Suzuki Y (1996) Aggregation of the inactive form of human alpha-galactosidase in the endoplasmic reticulum. Biochem Biophys Res Commun 220:812–815

    Article  PubMed  CAS  Google Scholar 

  • Kase R, Bierfreund U, Klein A et al (2000) Characterization of two alpha-galactosidase mutants (Q279E and R301Q) found in an atypical variant of Fabry disease. Biochim Biophys Acta 1501:227–235

    PubMed  CAS  Google Scholar 

  • Koskenvuo JW, Engblom E, Kantola IM et al (2009) Echocardiography in Fabry disease: diagnostic value of endocardial border binary appearance. Clin Physiol Funct Imaging 29:177–180

    Article  PubMed  Google Scholar 

  • Kroos MA, van Leenen D, Verbiest J, Reuser AJ, Hermans MM (1998) Glycogen storage disease type II: identification of a dinucleotide deletion and a common missense mutation in the lysosomal alpha-glucosidase gene. Clin Genet 53:379–382

    Article  PubMed  CAS  Google Scholar 

  • Kroos MA, Kirschner J, Gellerich FN et al (2004) A case of childhood Pompe disease demonstrating phenotypic variability of p.Asp645Asn. Neuromuscul Disord 14:371–374

    Article  PubMed  Google Scholar 

  • Kroos M, Pomponio RJ, van VL et al (2008) Update of the Pompe disease mutation database with 107 sequence variants and a format for severity rating. Hum Mutat 29: E13–E26

  • Kuipers R, van den BT, Joosten HJ, Lekanne dit Deprez RH, Mannens MM, Schaap PJ (2010) Novel tools for extraction and validation of disease-related mutations applied to fabry disease. Hum Mutat 31: 1026–1032

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa F, Aikawa S, Doi H, Okumiya T, Sakuraba H (2005) Fabry disease: correlation between structural changes in alpha-galactosidase, and clinical and biochemical phenotypes. Hum Genet 117:317–328

    Article  PubMed  CAS  Google Scholar 

  • Nakao S, Takenaka T, Maeda M et al (1995) An atypical variant of Fabry's disease in men with left ventricular hypertrophy. N Engl J Med 333:288–293

    Article  PubMed  CAS  Google Scholar 

  • Okumiya T, Ishii S, Kase R, Kamei S, Sakuraba H, Suzuki Y (1995) Alpha-galactosidase gene mutations in Fabry disease: heterogeneous expressions of mutant enzyme proteins. Hum Genet 95:557–561

    Article  PubMed  CAS  Google Scholar 

  • Okumiya T, Takenaka T, Ishii S, Kase R, Kamei S, Sakuraba H (1996) Two novel mutations in the alpha-galactosidase gene in Japanese classical hemizygotes with Fabry disease. Jpn J Hum Genet 41:313–321

    Article  PubMed  CAS  Google Scholar 

  • Okumiya T, Takata T, Sasaki M, Sakuraba H (1997) alpha-Galactosidase gene mutation and its expression product in Fabry disease (alpha-galactosidase deficiency). Rinsho Byori 45:127–135

    PubMed  CAS  Google Scholar 

  • Okumiya T, Kawamura O, Itoh K et al (1998) Novel missense mutation (M72V) of alpha-galactosidase gene and its expression product in an atypical Fabry hemizygote. Hum Mutat Suppl 1:S213–S216

    Article  Google Scholar 

  • Park JY, Kim GH, Kim SS, Ko JM, Lee JJ, Yoo HW (2009) Effects of a chemical chaperone on genetic mutations in alpha-galactosidase A in Korean patients with Fabry disease. Exp Mol Med 41:1–7

    Article  PubMed  Google Scholar 

  • Pittis MG, Montalvo AL, Miocic S et al (2003) Identification of four novel mutations in the alpha glucosidase gene in five Italian patients with infantile onset glycogen storage disease type II. Am J Med Genet A 121A:225–230

    Article  PubMed  Google Scholar 

  • Pittis MG, Donnarumma M, Montalvo AL et al (2008) Molecular and functional characterization of eight novel GAA mutations in Italian infants with Pompe disease. Hum Mutat 29:E27–E36

    Article  PubMed  CAS  Google Scholar 

  • Raben N, Nichols RC, Boerkoel C, Plotz P (1995) Genetic defects in patients with glycogenosis type II (acid maltase deficiency). Muscle Nerve 3:S70–S74

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Mari A, Coll MJ, Chabas A (2003) Molecular analysis in Fabry disease in Spain: fifteen novel GLA mutations and identification of a homozygous female. Hum Mutat 22:258

    Article  PubMed  Google Scholar 

  • Schafer E, Baron K, Widmer U et al (2005) Thirty-four novel mutations of the GLA gene in 121 patients with Fabry disease. Hum Mutat 25:412

    Article  PubMed  Google Scholar 

  • Shabbeer J, Robinson M, Desnick RJ (2005) Detection of alpha-galactosidase a mutations causing Fabry disease by denaturing high performance liquid chromatography. Hum Mutat 25:299–305

    Article  PubMed  CAS  Google Scholar 

  • Shabbeer J, Yasuda M, Benson SD, Desnick RJ (2006) Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2:297–309

    PubMed  CAS  Google Scholar 

  • Shimotori M, Maruyama H, Nakamura G et al (2008) Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone. Hum Mutat 29:331

    Article  PubMed  Google Scholar 

  • Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, Cooper DN (2009a) The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum Genomics 4:69–72

    PubMed  CAS  Google Scholar 

  • Stenson PD, Mort M, Ball EV et al (2009b) The Human Gene Mutation Database: 2008 update. Genome Med 1:13

    Article  PubMed  Google Scholar 

  • Topaloglu AK, Ashley GA, Tong B et al (1999) Twenty novel mutations in the alpha-galactosidase A gene causing Fabry disease. Mol Med 5:806–811

    PubMed  CAS  Google Scholar 

  • Utsumi K, Ueda K, Watanabe M et al (2009) Thrombosis in Japanese patients with Fabry disease. J Neurol Sci 283:83–85

    Article  PubMed  Google Scholar 

  • van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372:1342–1353

    Article  PubMed  Google Scholar 

  • Wan L, Lee CC, Hsu CM et al (2008) Identification of eight novel mutations of the acid alpha-glucosidase gene causing the infantile or juvenile form of glycogen storage disease type II. J Neurol 255:831–838

    Article  PubMed  CAS  Google Scholar 

  • Yang CC, Lai LW, Whitehair O, Hwu WL, Chiang SC, Lien YH (2003) Two novel mutations in the alpha-galactosidase A gene in Chinese patients with Fabry disease. Clin Genet 63:205–209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derralynn A. Hughes.

Additional information

Communicated by: Ed Wraith

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahim, H.Y., Baker, R.J., Mehta, A.B. et al. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T). J Inherit Metab Dis 35, 325–334 (2012). https://doi.org/10.1007/s10545-011-9395-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9395-4

Keywords

Navigation