Skip to main content
Log in

Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balmer C, Pandey AV, Rüfenacht V, Nuoffer JM, Fang P, Wong LJ, Häberle J (2014) Mutations and polymorphisms in the human argininosuccinate lyase (ASL) gene. Hum Mutat 35:27–35

    Article  CAS  PubMed  Google Scholar 

  • Barbosa P, Cialkowski M, O’Brien WE (1991) Analysis of naturally occurring and site-directed mutations in the argininosuccinate lyase gene. J Biol Chem 266:5286–90

    CAS  PubMed  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–70

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54

    Article  CAS  PubMed  Google Scholar 

  • Brunetti-Pierri N, Erez A, Shchelochkov O, Craigen W, Lee B (2009) Systemic hypertension in two patients with ASL deficiency: a result of nitric oxide deficiency? Mol Genet Metab 98:195–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brusilow S, Horwich A (2001) Urea cycle enzymes. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic & molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  • Brusilow SW, Maestri NE (1996) Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr 43:127–70

    CAS  PubMed  Google Scholar 

  • Doimo M, Trevisson E, Sartori G, Burlina A, Salviati L (2012) Yeast complementation is sufficiently sensitive to detect the residual activity of ASL alleles associated with mild forms of argininosuccinic aciduria. J Inherit Metab Dis 35:557–8

    Article  PubMed  Google Scholar 

  • Dursun A, Sivri HS, Ozon A, Akcaören Z, Tokatly A, Koch HG, Coskun T (2008) Argininosuccinic aciduris associated with pancreatitis (abstract). J Inherit Metab Dis 31(Supp. 1):90

    Google Scholar 

  • Engel K, Vuissoz JM, Eggimann S, Groux M, Berning C, Hu L, Klaus V, Moeslinger D, Mercimek-Mahmutoglu S, Stockler S, Wermuth B, Häberle J, Nuoffer JM (2012) Bacterial expression of mutant argininosuccinate lyase reveals imperfect correlation of in-vitro enzyme activity with clinical phenotype in argininosuccinic aciduria. J Inherit Metab Dis 35:133–40

    Article  CAS  PubMed  Google Scholar 

  • Erez A, Nagamani SC, Lee B (2011a) Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am J Med Genet C: Semin Med Genet 157:45–53

    Article  CAS  Google Scholar 

  • Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, Black JO, Zeng H, Tang Y, Reddy AK, Summar M, O’Brien WE, Harrison DG, Mitch WE, Marini JC, Aschner JL, Bryan NS, Lee B (2011b) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ficicioglu C, Mandell R, Shih VE (2009) Argininosuccinate lyase deficiency: longterm outcome of 13 patients detected by newborn screening. Mol Genet Metab 98:273–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flück CE, Mullis PE, Pandey AV (2009) Modeling of human P450 oxidoreductase structure by in silico mutagenesis and Md simulation. Mol Cell Endocrinol 313:17–22

    Article  PubMed  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  • Hooft RW, Sander C, Vriend G (1997) Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 13:425–30

    CAS  PubMed  Google Scholar 

  • Hu L, Pandey AV, Eggimann S, Rüfenacht V, Moslinger D, Nuoffer JM, Häberle J (2013) Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria. J Biol Chem 288:34599–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacoby LB, Littlefield JW, Milunsky A, Shih VE, Wilroy RS Jr (1972) A microassay for argininosuccinase in cultured cells. Am J Hum Genet 24:321–4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleijer WJ, Garritsen VH, Linnebank M, Mooyer P, Huijmans JG, Mustonen A, Simola KO, Arslan-Kirchner M, Battini R, Briones P, Cardo E, Mandel H, Tschiedel E, Wanders RJ, Koch HG (2002) Clinical, enzymatic, and molecular genetic characterization of a biochemical variant type of argininosuccinic aciduria: prenatal and postnatal diagnosis in five unrelated families. J Inherit Metab Dis 25:399–410

    Article  CAS  PubMed  Google Scholar 

  • Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–83

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5

    Article  CAS  PubMed  Google Scholar 

  • Linnebank M, Tschiedel E, Häberle J, Linnebank A, Willenbring H, Kleijer WJ, Koch HG (2002) Argininosuccinate lyase (ASL) deficiency: mutation analysis in 27 patients and a completed structure of the human ASL gene. Hum Genet 111:350–9

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Elstner M, Kaxiras E, Frauenheim T, Hermans J, Yang W (2001) Quantum mechanics simulation of protein dynamics on long timescale. Proteins 44:484–9

    Article  CAS  PubMed  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–5

    Article  CAS  PubMed  Google Scholar 

  • Mercimek-Mahmutoglu S, Moeslinger D, Häberle J, Engel K, Herle M, Strobl MW, Scheibenreiter S, Muehl A, Stockler-Ipsiroglu S (2010) Long-term outcome of patients with argininosuccinate lyase deficiency diagnosed by newborn screening in Austria. Mol Genet Metab 100:24–8

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Nagai K, Mori M, Nagao M, Imamura M, Iijima M, Kobayashi K (2002) Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr Dev Pathol 5:597–601

    Article  PubMed  Google Scholar 

  • O’Brien WE, Barr RH (1981) Argininosuccinate lyase: purification and characterization from human liver. Biochemistry 20:2056–60

    Article  PubMed  Google Scholar 

  • O’Brien WE, McInnes R, Kalumuck K, Adcock M (1986) Cloning and sequence analysis of cDNA for human argininosuccinate lyase. Proc Natl Acad Sci U S A 83:7211–5

    Article  PubMed Central  PubMed  Google Scholar 

  • Palekar AG, Mantagos S (1981) Human liver arginiosuccinase purification and partial characterization. J Biol Chem 256:9192–4

    CAS  PubMed  Google Scholar 

  • Pandey AV, Mullis PE (2011) Molecular genetics and bioinformatics methods for diagnosis of endocrine disorders. In: Ranke MB, Mullis PE (eds) Diagnostics of endocrine function in children and adolescents, 4th edn. Karger, Basel, pp 1–21

    Google Scholar 

  • Pandey AV, Kempna P, Hofer G, Mullis PE, Flück CE (2007) Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol Endocrinol 21:2579–95

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–9

    Article  CAS  PubMed  Google Scholar 

  • Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J (2013) RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat 34:546–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampaleanu LM, Vallee F, Thompson GD, Howell PL (2001) Three-dimensional structure of the argininosuccinate lyase frequently complementing allele Q286R. Biochemistry 40:15570–80

    Article  CAS  PubMed  Google Scholar 

  • Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional sites in protein structures. J Mol Biol 339:607–33

    Article  CAS  PubMed  Google Scholar 

  • Shulman-Peleg A, Nussinov R, Wolfson HJ (2005) SiteEngines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Res 33:W337–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RE, Lovell SC, Burke DF, Montalvao RW, Blundell TL (2007) Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities. Bioinformatics 23:1099–105

    Article  CAS  PubMed  Google Scholar 

  • Solitare GB, Shih VE, Nelligan DJ, Dolan TF Jr (1969) Argininosuccinic aciduria: clinical, biochemical, anatomical and neuropathological observations. J Ment Defic Res 13:153–70

    CAS  PubMed  Google Scholar 

  • Tanaka T, Nagao M, Mori T, Tsutsumi H (2002) A novel stop codon mutation (X465Y) in the argininosuccinate lyase gene in a patient with argininosuccinic aciduria. Tohoku J Exp Med 198:119–24

    Article  CAS  PubMed  Google Scholar 

  • Todd S, McGill JR, McCombs JL, Moore CM, Weider I, Naylor SL (1989) cDNA sequence, interspecies comparison, and gene mapping analysis of argininosuccinate lyase. Genomics 4:53–9

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson S, Westall RG (1960) Argininosuccinase activity in brain tissue. Nature 188:235–6

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson S, Westall RG (1964) Argininosuccinic aciduria. Argininosuccinase and arginase in human blood cells. Clin Sci 26:261–9

    CAS  PubMed  Google Scholar 

  • Topham CM, Srinivasan N, Blundell TL (1997) Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 10:7–21

    Article  CAS  PubMed  Google Scholar 

  • Trevisson E, Salviati L, Baldoin MC, Toldo I, Casarin A, Sacconi S, Cesaro L, Basso G, Burlina AB (2007) Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum Mutat 28:694–702

    Article  CAS  PubMed  Google Scholar 

  • Trevisson E, Burlina A, Doimo M, Pertegato V, Casarin A, Cesaro L, Navas P, Basso G, Sartori G, Salviati L (2009) Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J Biol Chem 284:28926–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vallee F, Turner MA, Lindley PL, Howell PL (1999) Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate. Biochemistry 38:2425–34

    Article  CAS  PubMed  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(52–6):29

    Google Scholar 

  • Walker DC, McCloskey DA, Simard LR, McInnes RR (1990) Molecular analysis of human argininosuccinate lyase: mutant characterization and alternative splicing of the coding region. Proc Natl Acad Sci U S A 87:9625–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker DC, Christodoulou J, Craig HJ, Simard LR, Ploder L, Howell PL, McInnes RR (1997) Intragenic complementation at the human argininosuccinate lyase locus. Identification of the major complementing alleles. J Biol Chem 272:6777–83

    Article  CAS  PubMed  Google Scholar 

  • Worth CL, Bickerton GR, Schreyer A, Forman JR, Cheng TM, Lee S, Gong S, Burke DF, Blundell TL (2007) A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease. J Bioinforma Comput Biol 5:1297–318

    Article  CAS  Google Scholar 

  • Yu B, Thompson GD, Yip P, Howell PL, Davidson AR (2001) Mechanisms for intragenic complementation at the human argininosuccinate lyase locus. Biochemistry 40:15581–90

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann A, Bachmann C, Baumgartner R (1986) Severe liver fibrosis in argininosuccinic aciduria. Arch Pathol Lab Med 110:136–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical assistance provided by the late M. Groux, Bern.

Funding

This work was supported by the Swiss National Science Foundation [grants No. 310030_127184/1 and 310030_153196/1 to JH and 310031_134926 to AVP] and a grant from Schweizerische Mobiliar Genossenschaft Jubiläumsstiftung to AVP.

Compliance with Ethics Guidelines

Conflict of interest

None.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Häberle.

Additional information

Communicated by: Carlo Dionisi-Vici

Jean-Marc Nuoffer and Johannes Häberle contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 41235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Pandey, A.V., Balmer, C. et al. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria. J Inherit Metab Dis 38, 815–827 (2015). https://doi.org/10.1007/s10545-014-9807-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9807-3

Keywords

Navigation