Skip to main content
Log in

Commutator-free Lie group methods with minimum storage requirements and reuse of exponentials

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A new format for commutator-free Lie group methods is proposed based on explicit classical Runge-Kutta schemes. In this format exponentials are reused at every stage and the storage is required only for two quantities: the right hand side of the differential equation evaluated at a given Runge-Kutta stage and the function value updated at the same stage. The next stage of the scheme is able to overwrite these values. The result is proven for a 3-stage third order method and a conjecture for higher order methods is formulated. Five numerical examples are provided in support of the conjecture. This new class of structure-preserving integrators has a wide variety of applications for numerically solving differential equations on manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is implied here and later on that when the upper bound on the index in a sum is smaller than the lower bound, the sum is set to 0 and if the same conditions hold for a product, the product is set to 1, e.g. \(\sum _{j=1}^0...=0\), \(\prod _{j=1}^0...=1\).

  2. by analogy with quantum field theory

  3. The clash of notation here is unfortunate, but it is customary in the literature on low-storage schemes to use \(A_i\) for the coefficients, while it is customary in the literature on Lie group methods to use A(Y) on the right hand side of Eq. (3.1).

  4. and all 3-stage third-order explicit RK schemes satisfying the constraint (4.17)

  5. up to the dimension: we use \(5\times 5\) orthogonal matrices and Ref. [23] used \(4\times 4\)

  6. The simplification that allows for this observation can be traced to the fact that \(b_2=0\).

References

  1. Allampalli, V., Hixon, R., Nallasamy, M., Sawyer, S.D.: High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics. J. Comput. Phys. 228(10), 3837–3850 (2009). https://doi.org/10.1016/j.jcp.2009.02.015

    Article  MATH  Google Scholar 

  2. Bazavov, A., et al.: Gradient flow and scale setting on MILC HISQ ensembles. Phys. Rev. D 93(9), 094510 (2016). https://doi.org/10.1103/PhysRevD.93.094510

    Article  MathSciNet  Google Scholar 

  3. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm. Comput. Fluids 35(10), 1459–1463 (2006). https://doi.org/10.1016/j.compfluid.2005.04.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardini, M., Pirozzoli, S.: A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena. J. Comput. Phys. 228(11), 4182–4199 (2009). https://doi.org/10.1016/j.jcp.2009.02.032

    Article  MATH  Google Scholar 

  5. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 3rd edn. Wiley, United States (2016)

    Book  Google Scholar 

  6. Carpenter, M., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. Tech. Rep. NASA-TM-109112, NASA (1994)

  7. Celledoni, E., Marthinsen, A., Owren, B.: Commutator-free Lie group methods. Futur. Gener. Comput. Syst. 19(3), 341–352 (2003). https://doi.org/10.1016/S0167-739X(02)00161-9. (Special Issue on Geometric Numerical Algorithms)

    Article  Google Scholar 

  8. Celledoni, E., Marthinsen, H., Owren, B.: An introduction to Lie group integrators - basics, new developments and applications. J. Comput. Phys. 257, 1040–1061 (2014). https://doi.org/10.1016/j.jcp.2012.12.031. (Physics-compatible numerical methods)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer 20, 1–119 (2011). https://doi.org/10.1017/S096249291100002X

    Article  MathSciNet  MATH  Google Scholar 

  10. Crouch, P.E., Grossman, R.: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3(1), 1–33 (1993). https://doi.org/10.1007/BF02429858

    Article  MathSciNet  MATH  Google Scholar 

  11. Curry, C., Owren, B.: Variable step size commutator free Lie group integrators. Numerical Algorithms 82(4), 1359–1376 (2019). https://doi.org/10.1007/s11075-019-00659-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Engo, K., Marthinsen, A., Munthe-Kaas, H.Z.: DiffMan: An object-oriented MATLAB toolbox for solving differential equations on manifolds. Appl. Numer. Math. 39(3), 323–347 (2001). https://doi.org/10.1016/S0168-9274(00)00042-8. (Themes in Geometric Integration)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Dordrecht (2006). https://doi.org/10.1007/3-540-30666-8

    Book  MATH  Google Scholar 

  14. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I Nonstiff problems, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  15. Kennedy, C.A., Carpenter, M.H., Lewis, R.: Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000). https://doi.org/10.1016/S0168-9274(99)00141-5

    Article  MathSciNet  MATH  Google Scholar 

  16. Ketcheson, D.I.: Runge-Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010). https://doi.org/10.1016/j.jcp.2009.11.006

    Article  MathSciNet  MATH  Google Scholar 

  17. Knoth, O.: B-Series (2020). https://github.com/OsKnoth/B-Series

  18. Knoth, O., Wolke, R.: Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows. Appl. Numer. Math. 28(2), 327–341 (1998). https://doi.org/10.1016/S0168-9274(98)00051-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Luescher, M.: Properties and uses of the Wilson flow in lattice QCD. JHEP 08, 071 (2010). https://doi.org/10.1007/JHEP08(2010)071. (10.1007/JHEP03(2014)092. [Erratum: JHEP03,092(2014)])

    Article  MathSciNet  Google Scholar 

  20. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer Publishing Company, Berlin (1999)

    Book  Google Scholar 

  21. Munthe-Kaas, H.: Lie-Butcher theory for Runge-Kutta methods. BIT Numer. Math. 35(4), 572–587 (1995). https://doi.org/10.1007/BF01739828

    Article  MathSciNet  MATH  Google Scholar 

  22. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111 (1998). https://doi.org/10.1007/BF02510919

    Article  MathSciNet  MATH  Google Scholar 

  23. Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999). https://doi.org/10.1016/S0168-9274(98)00030-0. (Proceedings of the NSF/CBMS Regional Conference on Numerical Analysis of Hamiltonian Differential Equations)

    Article  MathSciNet  MATH  Google Scholar 

  24. Munthe-Kaas, H.Z., Owren, B.: Computations in a free Lie algebra. Philosophical Transactions of the Royal Society of London. Series A: Math., Phys. Eng. Sci. 357, 957–981 (1999)

    MATH  Google Scholar 

  25. Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012). https://doi.org/10.1016/j.jcp.2011.09.003

    Article  MathSciNet  MATH  Google Scholar 

  26. Owren, B.: Order conditions for commutator-free Lie group methods. J. Phys. A: Math. Gen. 39(19), 5585–5599 (2006). https://doi.org/10.1088/0305-4470/39/19/s15

    Article  MathSciNet  MATH  Google Scholar 

  27. Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based on rigid frames. BIT Numer. Math. 39(1), 116–142 (1999). https://doi.org/10.1023/A:1022325426017

    Article  MathSciNet  MATH  Google Scholar 

  28. Ralston, A.: Runge-Kutta methods with minimum error bounds. Math. Comp. 16, 431–437 (1962). https://doi.org/10.1090/S0025-5718-1962-0150954-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Stanescu, D., Habashi, W.: 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 143(2), 674–681 (1998). https://doi.org/10.1006/jcph.1998.5986

    Article  MATH  Google Scholar 

  30. Toulorge, T., Desmet, W.: Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems. J. Comput. Phys. 231(4), 2067–2091 (2012). https://doi.org/10.1016/j.jcp.2011.11.024

    Article  MathSciNet  MATH  Google Scholar 

  31. Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT Numer. Math. 49(2), 449–473 (2009). https://doi.org/10.1007/s10543-009-0222-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Williamson, J.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980). https://doi.org/10.1016/0021-9991(80)90033-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Yan, Y.: Low-storage Runge-Kutta method for simulating time-dependent quantum dynamics. Chin. J. Chem. Phys. 30(3), 277–286 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Andrea Shindler for careful reading and comments on the manuscript and Oswald Knoth for bringing my attention to Ref. [18, 31], comments on the manuscript and, most importantly, for independently checking the order conditions for all coefficient schemes of Table 1 (as Lie group integrators of the form (4.18)–(4.19)) with his software available at [17] and explaining me the theory and algorithmic details behind that software. This work was in part supported by the U.S. National Science Foundation under award PHY-1812332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Bazavov.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Matlab code

Matlab code

To illustrate the usage of the 2N-storage schemes as commutator-free Lie group integrators we present below a Matlab script that generates a scaling plot similar to Fig. 3 using the integrators BWRRK33, TSRKF84 and YRK135 from Table 1.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazavov, A. Commutator-free Lie group methods with minimum storage requirements and reuse of exponentials. Bit Numer Math 62, 745–771 (2022). https://doi.org/10.1007/s10543-021-00892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00892-x

Keywords

Mathematics Subject Classification

Navigation