Advertisement

Biologia Plantarum

, Volume 62, Issue 4, pp 601–616 | Cite as

Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants

  • I. Sadura
  • A. Janeczko
Open Access
Review

Abstract

Brassinosteroids (BRs) are plant hormones that were isolated for the first time in the 1970s. This group currently includes more than 70 compounds that differ in their structure and physiological activity. BRs are present in plants in a free form or in the form of conjugates. BRs are known as plant growth regulators, but they also play a role in the plant response to environmental stresses. In the case of plants that are exposed to low/high temperature, exogenous BRs can counteract growth inhibition and reduce biomass losses as well as increase plant survival. BRs show a multidirectional activity in regulating the metabolism of plants exposed to extreme temperatures. The following BRs actions can be distinguished: changes in membrane physicochemical properties, regulation of the expression of selected genes (including stress-responsive genes), as well as indirect effects on metabolism through other hormones or signalling molecules (such as hydrogen peroxide). This review summarizes the current knowledge about the effects of BRs on the physiological and biochemical processes that occur in plants during exposure to low or high temperatures.

Additional key words

plant acclimation cell membranes cold freezing gene expression heat oxidative damage photosynthesis proline 

Abbreviations

ABA

abscisic acid

APX

ascorbate peroxidase

AsA

ascorbic acid

BAK1

BRI1 associated receptor kinase1

BES1

bri1-EMS-supressor1

BIN2

brassinosteroid insensitive2 kinase

BR

brassinosteroid

BRI1

cell surface receptor kinase

Brz

brassinazole

BSK1

brassinosteroid-signalling kinase1

BZR1

brassinazole resistant1

CAT

catalase

CBFs

C-repeat/dehydration responsive element binding factors

CI

chilling injury

COR

cold-responsive proteins

DHAR

dehydroascorbate reductase

E

transpiration rate

ETR

electron transport rate

Fv/Fm

maximum quantum efficiency of PS II photochemistry

Fv’/Fm’

efficiency of open reaction centres in light

gs

stomatal conductance

GR

glutathione reductase

GSH

reduced glutathione

HSP

heat shock protein

MDA

malondialdehyde

MDAR

monodehydroascorbate reductase

PN

net photosynthetic rate

POD

peroxidase

qP

photochemical quenching coefficient

ROS

reactive oxygen species

Rubisco

ribulose—1,5-bis-phosphate carboxylase/oxygenase

SOD

superoxide dismutase

ΦPSII

effective quantum yield of PS II photochemistry

Supplementary material

10535_2018_805_MOESM1_ESM.pdf (92 kb)
Supplementary material, approximately 93 KB.

References

  1. Aghdam, M.S., Asghari, M., Farmani, B., Mohayeji, M., Moradbeygi, H.: Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. - Sci. Hort. 144: 116–120, 2012.CrossRefGoogle Scholar
  2. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. - Environ. exp. Bot. 59: 206–216, 2007.CrossRefGoogle Scholar
  3. Bajguz, A.: Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. - J. Plant Physiol. 166: 882–886, 2009.CrossRefPubMedGoogle Scholar
  4. Bajguz, A., Tretyn, A.: The chemical characteristic and distribution of brassinosteroids in plants. - Phytochemistry 62: 1027–1046, 2003.CrossRefPubMedGoogle Scholar
  5. Clouse, S.D.: A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes and mutants. - J. Plant Growth Regul. 34: 828–844, 2015.CrossRefGoogle Scholar
  6. Cui, L., Zou, Z., Zhang, J., Zhao, Y., Yan, F.: 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.). - Funct. integr. Genomics 16: 29–35, 2016.CrossRefPubMedGoogle Scholar
  7. Deng, Z., Zhang, X., Tang, W., Oses-Prieto J.A., Suzuki, N., Gendron, J. M., Chen, H., Guan, S., Chalkley, R.J., Peterman, T.K., Burlingame, A.L., Wang, Z.-Y.: A proteomic study of brassinosteroid response in Arabidopsis. - Mol. Cell Proteomics 6: 2058–2071, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna, P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. - Plant J. 29: 681–691, 2002.CrossRefPubMedGoogle Scholar
  9. Dhaubhadel, S., Chaudhary, S., Dobinson, K. F., Krishna, P.: Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. - Plant mol. Biol. 40: 333–342, 1999.CrossRefPubMedGoogle Scholar
  10. Divi, U.K., Rahman, T., Krishna, P.: Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. - Plant Biotechnol. J. 14: 419–432, 2016.CrossRefPubMedGoogle Scholar
  11. Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S.P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Okleštková, J., Schulz, B., Zakhrabekova, S., Hansson, M.: Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the “Green Revolution" genetic toolkit. - Plant Physiol. 166: 1912–1927, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eremina, M., Unterholzner, S.J., Rathnayake, A.I., Castellanos, M., Khan, M., Kugler, K.G., May, S.T., Mayer, K.F.X., Rozhon, W., Poppenberger, B.: Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. - Proc. nat. Acad. Sci. USA 113: 5982–5991, 2016.CrossRefGoogle Scholar
  13. Fahad, S., Hussain, S., Saud, S., Khan, F., Hassan, S., Amanullah, N.W., Arif, M., Wang, F., Huang, J.: Exogenously applied plant growth regulators affect heatstressed rice pollens. - J. Agron Crop Sci. 202: 139–150, 2016.CrossRefGoogle Scholar
  14. Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., Ahmad A.: 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. - Photosynthetica 49: 55–64, 2011.CrossRefGoogle Scholar
  15. Filek, M., Rudolphi-Skórska, E., Sieprawska, A., Kvasnica, M., Janeczko, A.: Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. - Steroids 128: 37–45, 2017.CrossRefPubMedGoogle Scholar
  16. Fujioka, S., Yokota, T.: Biosynthesis and metabolism of brassinosteroids. - Physiol. Plant. 100: 710–715, 1997.CrossRefGoogle Scholar
  17. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Jr., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C., Jr.: Brassinolide, a plant growthpromoting steroid isolated from Brassica napus pollen. - Nature 281: 216–217, 1979.CrossRefGoogle Scholar
  18. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments: a review. - Plant Signal Behav. 7: 1456–1466, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  19. He, R.-Y., Wang, G.-J., Wang, X.-S.: Effects of brassinolide on growth and chilling resistance of maize seedlings. - In: Cutler, G.H., Yokota, T, Adam, G. (ed.): Brassinosteroids. Vol. 19. Pp. 220–230. American Chemical Society, Washington 1991.CrossRefGoogle Scholar
  20. Henry, R.P.: Multiple roles of carbonic anhydrase in cellular transport and metabolism. - Annu. Rev. Plant Physiol. 58: 523–538, 1996.CrossRefGoogle Scholar
  21. Hodges, D. M., DeLong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604–611, 1999.CrossRefGoogle Scholar
  22. Hörtensteiner, S., Kräutler, B.: Chlorophyll breakdown in higher plants. - BBA Bioenergetics 1807: 977–988, 2011.CrossRefPubMedGoogle Scholar
  23. Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M.L., Munnik, T., Saidi, Y., Goloubinoff, P., Harwood, J.L., Vigh, L.: Heat shock response in photosynthetic organisms: membrane and lipid connections. - Progr. Lipid Res. 51: 208–220, 2012.CrossRefGoogle Scholar
  24. Hu, W.H., Wu, Y., Zeng, J.Z., He, L., Zeng, Q.M.: Chillinduced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. - Photosynthetica 48: 537–544, 2010.CrossRefGoogle Scholar
  25. Janeczko, A. (ed): Wystepowanie, transport i wybrane aspekty aktywnosci fizjologicznej brasinosteroidów w roslinach uprawnych z rodzin Poaceae I Fabaceae. [Presence, Transport and PhysiologicalAactivity of Brassinosteroids in Crop Plants from Poaceae and Fabaceae family]. - Polish Academy of Sciences, Krakow 2016. [In Polish.]Google Scholar
  26. Janeczko, A., Gruszka, D., Pociecha, E., Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H.M., Kocurek, M., Waligórski, P.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. - Plant Physiol. Biochem. 99: 126–141, 2016.CrossRefPubMedGoogle Scholar
  27. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. - Biol. Plant. 51: 355–358, 2007.CrossRefGoogle Scholar
  28. Janeczko, A., Hura, K., Skoczowski, A., Idzik, I., Biesaga-Koscielniak, J., Niemczyk, E.: Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. - Acta Physiol Plant. 31: 71–79, 2009.CrossRefGoogle Scholar
  29. Janeczko, A., Okleštková, J., Pociecha, E., Koscielniak, J., Mirek, M.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. - Acta Physiol. Plant. 33: 1249–1259, 2011.CrossRefGoogle Scholar
  30. Jiang, Y.-P., Huang, L.-F., Cheng, F., Zhou, Y.-H., Xia, X.-J., Mao, W.-H., Shi, K., Yu, J.-Q.: Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. - Physiol Plant. 148: 133–145, 2013.CrossRefPubMedGoogle Scholar
  31. Jin, S.H., Li, X.Q., Wang, G.G., Zhu, X.T.: Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. - AoB Plants 7: plv009, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Johnson, G., Williams, J.P.: Effect of growth temperature on the biosynthesis of chloroplastic galactosyldiacylglycerol molecular species in Brassica napus leaves. - Plant Physiol. 91: 924–929, 1989.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A., Krishna, P.: Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. - Planta 225: 353–364, 2007.CrossRefPubMedGoogle Scholar
  34. Kim, T.-W., Chang, S.C.,. Lee, J.S, Takatsuto, S., Yokota, T., Kim, S.-K.: Novel biosynthetic pathway of castasterone from cholesterol in tomato. - Plant Physiol. 135: 1231–1242, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim, Y.-S., Joo, S.-H., Hwang, J.-Y., Park, C.H., Kim, S.-K.: Characterization of C29-brassinosteroids and their biosynthetic precursors in immature seeds of Phaseolus vulgaris. - Bull. korean chem. Soc. 27: 1117–1118, 2006.CrossRefGoogle Scholar
  36. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., Kuznetsov, V.V.: Signaling role of reactive oxygen species in plants under stress.–Russ. J Plant Physiol. 59: 141–154, 2012.CrossRefGoogle Scholar
  37. Krishna, P.: Brassinosteroid-mediated stress responses. - J. Plant Growth Regul. 22: 289–297, 2003.CrossRefPubMedGoogle Scholar
  38. Lafuente, M.T., Zacarias, L., Martinez-Téllez, M.A., Sanchez-Ballesta, M.T., Granell, A.: Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus. - Postharvest Biol. Technol. 29: 308–317, 2003.CrossRefGoogle Scholar
  39. Li, B., Zhang, C., Cao, B., Qin, G., Wang, W., Tian, S.: Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. - Amino Acids 43: 2469–2480, 2012.CrossRefPubMedGoogle Scholar
  40. Li, J.M., Jin, H.: The regulation of brassinosteroids signaling. - Trends Plant Sci. 12: 37–41, 2007.CrossRefPubMedGoogle Scholar
  41. Li, H., Ye, K., Shi, Y., Cheng, J., Zhang, X., Yang, S.: BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. - Mol. Plants 10: 545–559, 2017.CrossRefGoogle Scholar
  42. Liu, Y., Jiang, H., Zhao, Z., An, L.: Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. - J. Plant Physiol. 168: 853–862, 2011.CrossRefPubMedGoogle Scholar
  43. Liu, Y., Zhao, Z., Si, J., Di, C., Han, J., An, L.: Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. - Plant Growth Regul. 25: 207–214, 2009.CrossRefGoogle Scholar
  44. Mazorra, L.M., Holton, N., Bishop, G.J., Núñez, M.: Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. - Plant Physiol. Biochem. 49: 1420–1428, 2011.CrossRefPubMedGoogle Scholar
  45. Micheli, F.: Pectin methylesterases: cell wall enzymes with important roles in plant physiology. - Trends Plant Sci. 6: 414–419, 2001.CrossRefPubMedGoogle Scholar
  46. Mitchell, J.W., Mandava, N., Worley, J.F., Plimmer, J.R., Smith, M.V.: Brassins - a new family of plant hormones from rape pollen. - Nature 225: 1065–1066, 1970.CrossRefPubMedGoogle Scholar
  47. Morillon, R., Catterou, M., Sangwan, R.S., Sangwan, B.S., Lassalles, J.P.: Brassinolide may control aquaporin activities in Arabidopsis thaliana. - Planta 212: 199–204, 2001.CrossRefPubMedGoogle Scholar
  48. Parthier, B.: The role of phytohormones (cytokinins). III Chloroplast development. - Biochem. Physiol. Pflanz. 174: 173–214, 1979.CrossRefGoogle Scholar
  49. Park, S.C., Kim, T.-W., Kim, S.-K.: Identification of brassinosteroids with 24R-methyl in immature seeds of Phaseolus vulgaris. - Bull. korean chem. Soc. 21: 1274–1276, 2000.Google Scholar
  50. Pociecha, E., Dziurka, M., Oklestkova, J., Janeczko, A.: Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. - Plant Growth Regul. 80: 127–135, 2016.CrossRefGoogle Scholar
  51. Pociecha, E., Dziurka, M., Waligórski, P., Krepski, T., Janeczko, A.: 24-Epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivardependent manner. - J. Plant Growth. Regul. 36: 618–628, 2017.CrossRefGoogle Scholar
  52. Qu, T., Liu, R., Wang, W., An, L., Chen, T., Liu, G., Zhao, Z.: Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. - Cryobiology 63: 111–117, 2011.CrossRefPubMedGoogle Scholar
  53. Samakovli, D., Margaritopoulou, T., Prassinos, C., Milioni, D., Hatzopoulos, P.: Brassinosteroid nuclear signaling recruits HSP90 activity. - New Phytol. 203: 743–757, 2014.CrossRefPubMedGoogle Scholar
  54. Sakuraba, Y., Lee, S.H., Kim, Y.S., Park, O.K., Hörtensteiner, S., Paek, N.C.: Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. - J. exp. Bot. 65: 3915–3925, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schaller, H.: The role of sterols in plant growth and development. - Progr. Lipid Res. 42: 163–175, 2003.CrossRefGoogle Scholar
  56. Senaratna, T., Mackay, C.E., McKersie, B.D., Fletcher, R.A.: Uniconazole-induced chilling tolerance in tomato and its relationship to antioxidant content. - J. Plant Physiol. 133: 56–61, 1988.CrossRefGoogle Scholar
  57. Shu, H.M., Guo, S.Q., Gong, Y.Y., Jiang, J.W., Ni, W.C.: RNA-seq analysis reveals a key role of brassinolideregulated pathways in NaCl-stressed cotton. - Biol. Plant. 61: 667–674, 2017.CrossRefGoogle Scholar
  58. Singh I., Kumar U., Singh S.K., Gupta C., Singh M., Kushwaha S.R.: Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. - Physiol. mol. Biol. Plants 18: 229–236, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Singh, I., Shono, M.: Effect of 24-epibrassinolide on pollen viability during heat-stress in tomato. - Indian J. exp. Biol. 41: 174–176, 2003.PubMedGoogle Scholar
  60. Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L., He, Z.L.: Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. - Biol. Plant. 60: 329–342, 2016.CrossRefGoogle Scholar
  61. Takatsuto, S., Kosuga, N., Abe, B-I., Noguchi, T., Fujioka, S., Yokota, T.: Occurrence of potential brassinosteroid precursor steroids in seeds of wheat and foxtail millet. - J. Plant Res. 112: 27–33, 1999.CrossRefGoogle Scholar
  62. Thussagunpanit, J., Jutamanee, K., Kaveeta, L., Chai-arree, W., Pankean, P., Homvisasevongsa, S., Suksamrarn, A.: Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation and rice seed set under heat stress. - J. Plant Growth Regul. 34: 320–331, 2015b.CrossRefGoogle Scholar
  63. Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-arree, W., Pankean, P., Suksamrarn, A.: Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. - Photosynthetica 53: 312–320, 2015a.CrossRefGoogle Scholar
  64. Tomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. - Plant Physiol. 118: 1–7, 1998.CrossRefGoogle Scholar
  65. Wang, Q., Ding, T., Gao, L., Pang, J., Yang, N.: Effect of brassinolide on chilling injury of green bell pepper in storage. - Sci. Hort. 144: 195–200, 2012.CrossRefGoogle Scholar
  66. Wang, W., Bai, M.Y., Wang, Z.Y.: The brassinosteroid signalling network - a paradigm of signal transduction. - Curr. Opin. Plant Biol. 21: 147–153, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang, Z.Y., Wang, Q.M., Chong, K., Wang, L., Bai. M.Y., Jia, C.G.: The brassinosteroid signal transduction pathway. - Cell Res. 16: 427–434, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Weiss, D., Ori, N.: Mechanisms of cross talk between gibberellin and other hormones. - Plant Physiol. 144: 1240–1246, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wilen, R., Sacco, W., Gusta, M. L. V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. - Physiol. Plant. 95: 195–202, 1995.CrossRefGoogle Scholar
  70. Winter, J., Schneider, B., Meyenburg, S., Strack, D., Adam, G.: Monitoring brassinosteroid biosynthetic enzymes by fluorescent tagging and HPLC analysis of their substrates and products. - Phytochemistry 51: 237–242, 1999.CrossRefGoogle Scholar
  71. Wu, X., Yao, X., Chen, J., Zhu, Z., Zhang, H., Zha, D.: Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. - Acta Physiol Plant. 36: 251–261, 2014b.CrossRefGoogle Scholar
  72. Wu, X.X., He, J., Zhu, Z.W., Yang, S.J., Zha, D.S.: Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. - Biol. Plant. 58: 185–188, 2014a.CrossRefGoogle Scholar
  73. Xia, X.-J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z., Yu, J.Q.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. - Planta 230: 1185–1196, 2009b.CrossRefPubMedGoogle Scholar
  74. Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., Yu, J.-Q.: Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. - Plant Physiol. 150: 801–814, 2009a.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xia, X.-J., Zhou, Y.-H., Shi, K., Zhou, J., Foyer, C.H., Yu, J.-Q.: Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. - J. exp. Bot. 66: 2839–2856, 2015.CrossRefPubMedGoogle Scholar
  76. Xia, X.-J., Fang, P.-P., Guo, X., Qian, X.-J., Zhou, J., Shi, K., Zhou, Y.-H., Yu, J.-Q.: Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. - Plant Cell Environ. 2017: 1–13, 2017.Google Scholar
  77. Yang, G, Komatsu, S.: Microarray and proteomic analysis of brassinosteroid - and gibberellin-regulated gene and protein expression in rice. - Genomics Proteomics Bioinfor. 2: 77–83, 2004.CrossRefGoogle Scholar
  78. Yang, C.-J., Zhang, C., Lu, Y.-N., Jin, J.-Q., Wang, X.-L.: The mechanisms of brassinosteroids’ action: from signal transduction to plant development. - Mol. Plants 4: 588–600, 2011.CrossRefGoogle Scholar
  79. Yang, S., Maeshima, M., Tanaka, Y., Komatsu, S.: Modulation of vacuolar H+ - pumps and aquaporin by phytohormones in rice seedling leaf sheaths. - Biol. pharmacol. Bull. 26: 88–92, 2003.CrossRefGoogle Scholar
  80. Yokota, T., Ogino, Y., Takahashi, N., Saimoto, H., Fujioka, S., Sakurai, A.: Brassinolide is biosynthesized from castasterone in Catharanthus roseus crown gall cells. - Agr. Biol. Chem. 54: 1107–1108, 1990.Google Scholar
  81. Yoshizawa, E., Kaizuka, M., Yamagami, A., Higuchi-Takeuchi, M., Matsui, M., Kakei, Y., Shimada, Y., Sakuta, M., Osada, H., Asami, T., Nakano, T.: BPG3 is a novel chloroplast protein that involves the greening of leaves and related to brassinosteroid signaling. - Biosci. Biotechnol. Biochem. 78: 420–429, 2014.CrossRefPubMedGoogle Scholar
  82. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogués, S.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. - J. exp. Bot. 55: 1135–1143, 2004.CrossRefPubMedGoogle Scholar
  83. Yuan, L., Shu, S., Sun, J., Guo, S., Tezuka, T.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. - Photosynth. Res. 112: 205–214, 2012.CrossRefPubMedGoogle Scholar
  84. Zhang, S., Wei, Y., Lu, Y., Wang, X.: Mechanisms of brassinosteroids interacting with multiple hormones. - Plant Signal. Behav. 4: 1117–1120, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhang, Y.P., He, J., Yang, S.J., Chen, Y.Y.: Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. - Biol. Plant. 58: 311–318, 2014.CrossRefGoogle Scholar
  86. Zhang, Y.P., Zhu, X.H., Ding, H.D., Yang, S.J., Chen, Y.Y.: Foliar application of 24-epibrassinolide alleviates hightemperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. - Photosynthetica 51: 341–349, 2013.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakowPoland

Personalised recommendations