Skip to main content
Log in

Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

How to enhance fruit tolerance to cold stress is an important biological interest. In this paper, we found that mango (Mangifera indica L.) fruit treated with 10 μM brassinolide (BL) showed a higher tolerance to cold temperature of 5 °C. Further, we compared the changes in expression profiles of plasma membrane (PM) proteins and the corresponding gene expressions between BL-treated and control fruit. Fourteen differential proteins were positively identified by mass spectrometry, and were categorized into four groups, including transport, cellular biogenesis, defense and stress response, and unknown function. Among them, four proteins (remorin, abscisic stress ripening-like protein, type II SK2 dehydrin, and temperature-induced lipocalin) and genes encoding these proteins were up-regulated in BL treatment under cold stress. Moreover, we found that PM lipids in BL-treated fruit showed lower phase transition temperature and higher unsaturation degree, leading to higher fluidity under low temperature. These findings ascertain that PM proteins and lipids are involved in BL-mediated responses to cold stress in mango fruit, and provide novel evidence that BL plays an important role in regulating cold stress tolerance in fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

BL:

Brassinolide

BRs:

Brassinosteroids

CI:

Chilling injury

CBB:

Coomassie brilliant blue

DBI:

Double bond index

DSC:

Differential scanning calorimetry

EPR:

Electron paramagnetic resonance

FAs:

Fatty acids

IEF:

Isoelectric focusing

PM:

Plasma membrane

UFAs:

Unsaturated fatty acids

References

  • Allagulova ChR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68:945–951

    PubMed  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Bariola PA, Retelska D, Stasiak A, Kammerer RA, Fleming A, Hijri M, Franks S, Farmer EE (2004) Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants. Plant Mol Biol 55:579–594

    Article  PubMed  CAS  Google Scholar 

  • Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314:1410–1411

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chan ZL, Qin GZ, Xu XB, Li BQ, Tian SP (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Charron JBF, Breton G, Badawi M, Sarhan F (2002) Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett 517:129–132

    Article  Google Scholar 

  • Charron JBF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Ding ZS, Tian SP, Zheng XL, Zhou ZW, Xu Y (2007) Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol Plant 130:112–121

    Article  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  Google Scholar 

  • Ephritikhine G, Ferro M, Rolland N (2004) Plant membrane proteomics. Plant Physiol Biochem 42:943–962

    Article  PubMed  CAS  Google Scholar 

  • Han J, Tian SP, Meng XH, Ding ZS (2006) Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low-temperature stress. Physiol Plant 128:125–133

    Article  CAS  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381:373–378

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  PubMed  CAS  Google Scholar 

  • Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 143:461–472

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144:402–418

    Article  PubMed  CAS  Google Scholar 

  • Meng XH, Han J, Wang Q, Tian SP (2009) Changes in physiology and quality of peach fruit treated by methyl jasmonate under low temperature stress. Food Chem 106:501–508

    Article  Google Scholar 

  • Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:227–230

    Article  Google Scholar 

  • Moore S, Payton P, Wright M, Tanksley S, Giovannoni J (2005) Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J Exp Bot 56:2885–2895

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  • Raison JK, Orr GR (1986) Phase transitions in thylakoid polar lipids of chilling sensitive plants. A comparison of detection methods. Plant Physiol 80:638–645

    Article  PubMed  CAS  Google Scholar 

  • Raison JK, Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes. Their induction by disaturated phospholipids and their possible relation to chilling injury. Biochim Biophys Acta 731:69–78

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  PubMed  CAS  Google Scholar 

  • Spencer WE, Christensen MJ (1999) Multiplex relative RT-PCR method for verification of differential gene expression. Biotechniques 27:1044–1052

    PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85:9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tian SP, Liu J, Zhang CF, Meng XH (2010) Quality properties of harvested mango fruits and regulating technologies. In: Sivakumar D (ed) New trends in postharvest management of fresh produce II. Fresh Produce 4 (Special issue 1), Global Science Books, Kagawa ken, Japan, pp 49–54

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends Plant Sci 13:409–414

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yin ZM, Rorat T, Szabala BM, Ziolkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Zaharah SS, Singh Z (2011) Postharvest nitric oxide fumigation alleviates chilling injury, delays fruit ripening and maintains quality in cold-stored ‘Kensington Pride’ mango. Postharvest Biol Technol 60:202–210

    Article  CAS  Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul. doi:10.1007/s00344-011-9245-5

    Google Scholar 

  • Zhang CF, Tian SP (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chem 115:405–411

    Article  CAS  Google Scholar 

  • Zhang CF, Tian SP (2010) Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chem 120:864–872

    Article  CAS  Google Scholar 

  • Zhang CF, Ding ZS, Xu XB, Wang Q, Qin GZ, Tian SP (2010) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Zhang ZQ, Qin GZ, Tian SP (2010) Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biol Technol 56:50–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 31030051) and the National Basic Research Program of China (973 Program, Grant No. 2011CB100604), and the CAS/SAFEA International Partnership Program for Creative Research Teams (Grant No. 20090491019).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Tian.

Additional information

B. Li and C. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Zhang, C., Cao, B. et al. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43, 2469–2480 (2012). https://doi.org/10.1007/s00726-012-1327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1327-6

Keywords

Navigation