Skip to main content
Log in

The B-, G- and S-genomic Chi genes in family Triticeae

  • Original papers
  • Published:
Biologia Plantarum

Abstract

As result of a close evolutionary relationship between Triticeae B, G, and S genomes, the exchange of genetic material between them is possible and may be beneficial for broadening the genetic diversity of cultivated bread wheat. However, the extent to which regulatory networks are conserved remains poorly researched. Here, the structural organization and transcriptional activity of the B, S, and G genome copies of a gene encoding flavonoid biosynthesis enzyme chalcone-flavanone isomerase (CHI) were explored using introgression lines which differ from the wild type by carrying a non-bread wheat Chi-1 gene. Chi-S1, Chi-G1, and Chi-B1 all mapped to a comparable region of chromosomes 5S, 5G, and 5B, respectively. Nucleotide sequences of Aegilops speltoides Chi-S1 and Triticum timopheevii Chi-G1 were determined and compared with T. aestivum Chi-B1 sequences. The enzymes encoded by these three genes shared the same predicted tertiary structure and active sites. However, the replacement of Chi-B1 by Chi-S1 or Chi-G1 in a wheat background resulted in a significant decrease in the global amount of the Chi-1 transcript present in the seedling shoot indicating divergence in regulation of expression of the orthologous Chi-1 genes among Triticeae ssp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHI:

chalcone-flavanone isomerase

Chi :

gene encoding chalcone-flavanone isomerase

Ka :

number of non-synonymous substitutions

Ks :

number of synonymous substitutions

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

Ubc :

gene encoding ubiquitin

References

  • Adonina, I.G.: Kharakteristika satellitnyh povtorov vidov Aegilops L. sekcii Sitopsis i ikh ispol'zovanie v kachestve molekulyarnyh markerov. [Characterization of satellite repeats of Aegilops L. Sitopsis section and their application as molecular markers.] - Dissertation, Institute of Cytology and Genetics SB RAS, Novosibirsk 2007. [In Russ.]

    Google Scholar 

  • Adonina, I.G., Petrash, N.V., Timonova, E.M., Khristov, Y.A., Salina, E.A.: Construction and study of leaf rust-resistant common wheat lines with translocations of Aegilops speltoides Tausch. genetic material. — Russ. J. Genet. 48: 404–409, 2012.

    Article  CAS  Google Scholar 

  • Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. — Bioinformatics 22: 195–201, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott, L.: Environmental significance of anthocyanins in plant stress responses. — Photochem. Photobiol. 70: 1–9, 1999.

    Article  CAS  Google Scholar 

  • Corpet, F.; Multiple sequence alignment with hierarchical clustering. — Nucl. Acids Res. 16: 10881–10890, 1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaya, O., Boeuf, C., Salse, J., Pont, C., Sourdille, P., Bernard, M., Salina, E.: Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. — Theor. appl. Genet. 123: 1145–1157, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Dorofeev, V.F., Korovina, O.N. (ed.): Kul'turnaya Flora SSSR. [Flora of Cultivated Plants.] - Kolos Press, Leningrad 1979. [In Russ.]

    Google Scholar 

  • Druka, A., Kudrna, D., Rostoks, N., Brueggeman, R., Von Wettstein, D., Kleinhofs, A.: Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. — Gene 302: 171–178, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, M.: The origin of cultivated wheat. - In: Benjean, A.P., Angus, W.J. (ed.): The Wheat Book: a History of Wheat Breeding. Pp. 3–56. Lavoisier Publishing, Paris 2001.

    Google Scholar 

  • Goncharov, N.P.: Sravnitel'naja Genetika Pshenic i ikh Sorodichej. [Comparative genetics of wheats and their related species.] - Siberian Un-ty Press, Novosibirsk 2002. [In Russ.]

    Google Scholar 

  • Grotewold, E. (ed.): The Science of Flavonoids. - Springer, New York 2008.

    Google Scholar 

  • Gustafson, J.P, Sears, E.R.: An effective wheat gene manipulation system: problems and uses. - In: J. Janick (ed.): Plant Breeding Reviews. Vol. 11. Pp. 255–234. John Willey & Sons, New York, 1993.

    Google Scholar 

  • Himi, E., Nisar, A., Noda, K.: Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. — Genome 48: 747–754, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Jez, J.M., Bowman, M.E., Dixon, R.A., Noel, J.P.: Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. — Natur. Struct. Biol. 7: 786–791, 2000.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K.: The adaptive role of flavonoids: emphasis on cereals. — Cereal Res. Commun. 41: 185–198, 2013.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Salina, E.A.: Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. — Plant Breed. 120: 227–232, 2001.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Röder, M.S., Salina, E.A.: Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat. — BMC Plant Biol. 8: 88, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlestkina, E.K., Shoeva, O.Y.: Intron loss in the chalconeflavanone isomerase gene of rye. — Mol. Breed. 33: 953–959, 2014.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Tereshchenko, O.Y., Salina, E.A.: Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. — Mol. Genet. Genomics 282: 475–485, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina, E.K., Tereshchenko, O.Yu., Salina, E.A.: Flavonoid biosynthesis genes in wheat and wheat-alien hybrids: studies into gene regulation in plants with complex genomes. - In: Mothersill, C.E., Korogodina, V., Seymour, C.B. (ed.): Radiobiology and Environmental Security. Pp. 31–41. Springer, Dordrecht 2012.

    Chapter  Google Scholar 

  • Kilian, B., Özkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W., Salamini, F.: Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. — Mol. Biol. Evol. 24: 217–227, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kimber, G.: A reassessment of the origin of the polyploid wheats. — Genetics 78: 487–492, 1974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi, D.D.: The estimation of map distances from recombination values. — Ann. Eugenet. 12: 172–175, 1944.

    Article  Google Scholar 

  • Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, I.: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. — Genomics 1: 174–181, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Leonova, I.N., Röder, M.S., Budashkina, E.B., Kalinina, N.P., Salina, E.A.: Molecular analysis of leaf rust resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. — Russ. J. Genet. 38: 1397–1403, 2002.

    Article  CAS  Google Scholar 

  • Li, W.L., Faris, J.D., Chittoor, J.M., Leach, J.E., Hulbert, S., Liu, D.J., Chen, P.D., Gill, B.S.: Genomic mapping of defense response genes in wheat. — Theor. appl. Genet. 98: 226–233, 1999.

    Article  CAS  Google Scholar 

  • McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., Xia, X.C. (ed.): Catalogue of Gene Symbols for Wheat. - IWGS, Yokohama 2013.

    Google Scholar 

  • Mori, N., Liu, Y.-G., Tsunewaki, K.: Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. — Theor. appl. Genet. 90: 129–134, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M., Gojobori, T.: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. — Mol. Biol. Evol. 3: 418–426, 1986.

    CAS  PubMed  Google Scholar 

  • Plaschke, J., Ganal, M.W., Röder, M.S.: Detection of genetic diversity in closely related bread wheat using microsatellite markers. — Theor. appl. Genet. 91: 1001–1007, 1995.

    CAS  PubMed  Google Scholar 

  • Schneider, A., Molnar, I., Molnar-Lang, M.: Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. — Euphytica 163: 1–19, 2008.

    Article  CAS  Google Scholar 

  • Shoeva, O.Y., Khlestkina, E.K., Berges, H., Salina, E.A.: The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. — Gene 538: 334–341, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Solovyev, V.V.: Statistical approaches in eukaryotic gene prediction. - In: Balding, D., Cannings, C., Bishop, M. (ed.): Handbook of Statistical Genetics. 3rd Ed. Pp. 97–159. Wiley-Interscience, New York 2007.

    Chapter  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timonova, E.M., Leonova, I.N., Röder, M.S., Salina, E.: Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. — Mol. Breed. 31: 123–136, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Y. Shoeva.

Additional information

Acknowledgements: This study was partially supported by the State Budget Programme (Project No VI.53.1.5. = 0324-2015-0005), the Siberian Branch of the Russian Academy of Science (Integration project SBRAS/NAS Belarus No 22) and RFBR (Grant No 16-34-60052).We thank Ms. Galina Generalova for technical assistance and www.smartenglish.co.uk for linguistic advice in the preparation of the first manuscript draft.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoeva, O.Y., Dobrovolskaya, O.B., Leonova, I.N. et al. The B-, G- and S-genomic Chi genes in family Triticeae . Biol Plant 60, 279–284 (2016). https://doi.org/10.1007/s10535-016-0595-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0595-5

Additional key words

Navigation