Skip to main content
Log in

Intron loss in the chalcone-flavanone isomerase gene of rye

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The Chi gene encodes the flavonoid synthesis enzyme chalcone-flavanone isomerase. The complete coding sequence of the Chi gene was isolated by PCR from four cultivars of cereal rye (Secale cereale L.). Unlike most monocot and dicot plant species, S. cereale has one, rather than three introns in the Chi gene. Screening of a panel of 63 Triticeae accessions, representing 31 species, showed two intron loss events in the Triticeae tribe. One intron loss occurred early in the evolution of the Triticeae tribe, while another intron loss was only detected in S. cereale Chi. A new rye-specific PCR marker was developed based on Chi intron loss polymorphism and was shown to be effective for analysis of a wide range of intergenera Triticeae hybrids for the presence of rye genome. In addition, precise genetic mapping of the rye Chi gene was carried out based on insertion/deletion polymorphism between parents of a rye mapping population. The Chi gene was mapped on the long arm of chromosome 5R 9.3 cM distal to the restriction fragment length polymorphism marker Xscb35 and 4.4 cM proximal to the locus 3Rt encoding another flavonoid synthesis enzyme, anthocyanidin-3-glucoside rhamnosyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adonina IG, Orlovskaya OA, Tereshchenko OY, Koren LV, Khotyleva LV, Shumny VK, Salina EA (2011) Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. Russ J Genet 47:453–461

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Awad M, DeJager A (2002) Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci Hortic 92:265–276

    Article  CAS  Google Scholar 

  • Campbell PN, Smith AD, Peters TJ (2005) Biochemistry illustrated: biochemistry and molecular biology in the post-genomic era. Elsevier Churchill Livingstone, Edinburgh

    Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell Environ 30:1381–1399

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abstr 6

  • Druka A, Kudrna D, Rostoks N, Brueggeman R, von Wettstein D, Kleinhofs A (2003) Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178

    Article  CAS  PubMed  Google Scholar 

  • Gordeeva EI, Shoeva OY, Khlestkina EK (2013) Relationship between cold stress and anthocyanin biosynthesis in wheat. Cereal Res Commun 41:519–526. doi:10.1556/CRC.2013.0029

    Article  Google Scholar 

  • Grotewold E, Peterson T (1994) Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol Gen Genet 242:1–8

    CAS  PubMed  Google Scholar 

  • Häger KP, Müller B, Wind C, Erbach S, Fischer H (1996) Evolution of legumin genes: loss of an ancestral intron at the beginning of angiosperm diversification. FEBS Lett 387:94–98

    Article  PubMed  Google Scholar 

  • Hernandez I, Alegre L, Munne-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Rogiers SY, Schultz HR (2003) Nitrogen and ultraviolett radiation modify grapevines’ susceptibility to powdery mildew. Vitis 42:87–94

    CAS  Google Scholar 

  • Khlestkina EK (2013) The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun 41:185–198

    Article  CAS  Google Scholar 

  • Khlestkina EK, Myint Than MH, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequencing tags. Theor Appl Genet 109:725–732

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Tereshchenko OY, Salina EA (2009) Anthocyanin biosynthesis genes location and expression in wheat–rye hybrids. Mol Genet Genomics 282:475–485

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Antonova EV, Pershina LA, Soloviev AA, Badaeva ED, Börner A, Salina EA (2011) Variability of Rc (red coleoptile) alleles in wheat and wheat–alien genetic stock collections. Cereal Res Commun 39:465–474

    Article  Google Scholar 

  • Kim S, Jones R, Yoo KS, Pike LM (2004) Gold color in onions (Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Mol Genet Genomics 272:411–419

    Article  CAS  PubMed  Google Scholar 

  • Korzun V, Malyshev S, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E (2008) Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb Technol 42:216–221

    Article  CAS  Google Scholar 

  • Kuittinen H, Salguero D, Aguade M (2002) Parallel patterns of sequence variation within and between populations at three loci of Arabidopsis thaliana. Mol Biol Evol 19:2030–2034

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma SS (1999) Nutrient deficiency-dependent anthocyanin development in Spirodela polyrhiza L. Schleid. Biol Plant 42:621–624

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Madej LJ (1996) Worldwide trends in rye growing and breeding. Vortr Pflanzenzüchtung 35:1–6

    Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  CAS  PubMed  Google Scholar 

  • Mehdy MC, Lamb CJ (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J 6:1527–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nozzolillo C, Isabelle P, Andersen OM, Abou-Zaid M (2002) Anthocyanins of jack pine (Pinus banksiana) seedlings. Can J Bot 80:796–801

    Article  CAS  Google Scholar 

  • Olenichenko NA, Ossipov VI, Zagoskina NV (2006) Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ J Plant Physiol 53:495–500

    Article  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  • Plaza BM, Jimenez S, Segura ML, Contreras JI, Lao MT (2009) Physiological stress caused by salinity in Cordyline fruticosa and its indicators. Commun Soil Sci Plant Anal 40:473–484

    Article  CAS  Google Scholar 

  • Rychlik W (2007) OLIGO 7 Primer analysis software. In: Yuryev A (ed) Methods in molecular biology, vol 402: PCR primer design. Humana Press, Totowa, NJ, pp 35–59

    Chapter  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solovyev VV (2007) Statistical approaches in eukaryotic gene prediction. In: Balding D, Cannings C, Bishop M (eds) Handbook of statistical genetics, 3rd edn. Wiley-Interscience, London

    Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell Environ 24:1189–1197

    Article  CAS  Google Scholar 

  • Suzuki T, Honda Y, Mukasa Y (2005) Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci 168:1303–1307

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JNM (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7:1257–1263

    PubMed Central  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W (2005) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12:417–427

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida Y, Goto T, Hirai M, Masuda M (2002) Anthocyanin accumulation in strawberry fruits as affected by nitrogen nutrition. In: Hietaranta T, Linna M-M, Palonen P, Parikka P (eds) Acta horticulture, vol 567. ISHS, Tampere, pp 357–360

    Google Scholar 

  • Zakhleniuk OV, Raines CA, Lloyd JC (2001) pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529–534

    Article  CAS  PubMed  Google Scholar 

  • Zamora P, Pardo A, Fierro A, Prieto H, Zuniga GE (2013) Molecular characterization of the chalcone isomerase gene family in Deschampsia antarctica. Polar Biol 36:1269–1280

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by RFBR (Grant No. 12-04-33027), RAS (Molecular Biology Programme), the grant from the President of the Russian Federation (MD-2615.2013.4) and the State Budget Programme (Project No. VI.53.1.5.). We thank Ms. Galina Generalova for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 883 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Shoeva, O.Y. Intron loss in the chalcone-flavanone isomerase gene of rye. Mol Breeding 33, 953–959 (2014). https://doi.org/10.1007/s11032-013-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-0009-8

Keywords

Navigation