Skip to main content
Log in

Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Tobacco (Nicotiana tabacum L.) plantlets were grown on Murashige and Skoog medium in ventilated Magenta boxes and for the last subculture 10 µM ABA was added to the medium. After three weeks plantlets were transferred into pots with Perlite moistened with water and grown in controlled conditions (16-h photoperiod, day/night temperature 25/20 °C, air humidity about 45 %) either under low or high irradiance of 150 (LI) and 700 (HI) µmol m−2 s−1, respectively. Content of endogenous ABA was 271.7 pmol g−1(f.m.) in ABA treated plantlets, while in control plantlets it was only 53.3 pmol g−1(f.m.). After ex vitro transfer, stomatal conductance and transpiration rate decreased considerably in comparison with in vitro grown plantlets and remained lower also 7 d after ex vitro transfer, especially in ABA-treated plants and so wilting of plants was practically eliminated. Net photosynthetic rate also decreased 1 d after ex vitro transfer but after 7 d it was mostly higher than that of in vitro grown plantlets. Water use efficiency significantly increased in ABA-treated plants. Chlorophyll a+b content did not change immediately after ex vitro transfer, nevertheless, after 7 d chlorophyll content was higher in ABA-treated plants. Pool of xanthophyll cycle pigments (XCP) and the degree of their deepoxidation (DEPS), which are connected with harmless dissipation of light energy, increased under high irradiance. Contents of XCP and ABA precursors (neoxanthin and violaxanthin) were lower in ABA-treated plants than in control plants indicating less stress in these plants. Most chlorophyll a fluorescence parameters did not change considerably after ex vitro transfer and so the photoinhibition was not observed even under HI. Slight increase in non-photochemical quenching under HI in ABA-treated plants suggested their better photoprotection. Thus application of ABA to the last subculture can improve acclimatization of in vitro grown plants to ex vitro conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

Car:

β-carotene

Chl:

chlorophyll

DEPS:

degree of XCP deepoxidation [DEPS = (zeaxanthin + 0.5 antheraxanthin)/XCP]

Fm :

maximum chlorophyll fluorescence

Fv :

variable chlorophyll fluorescence

PS:

photosystem

qNP:

non-photochemical quenching

qP:

photochemical quenching

RWC:

relative water content

WUE:

water use efficiency

XCP:

xanthophyll cycle pigments (XCP = violaxanthin + antheraxanthin + zeaxanthin)

ΦPS2 :

quantum yield of PS 2 photochemistry

References

  • Agarwal, S., Sairam, R.K., Srivastava, G.C., Meena, R.C.: Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. — Biol. Plant. 49: 541–550, 2005.

    Article  CAS  Google Scholar 

  • Aguilar, M.L., Espadas, F.L., Coello, J., Maust, B.E., Trejo, C., Robert, M.L., Santamaría, J.M.: The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. — J. exp. Bot. 51: 1861–1866, 2000.

    Article  CAS  PubMed  Google Scholar 

  • An, Z., Jing, W., Liu, Y., Zhang, W.: Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. — J. exp. Bot. 59: 815–825, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Baraldi, R., Camaccini, F., Cortes, S., Magnani, F., Rapparini, F., Zamboni, A., Raddi, S.: Role of xanthophyll cyclemediated photoprotection in Arbutus unedo plants exposed to water stress during the Mediterranean summer. — Photosynthetica 46: 378–386, 2008.

    Article  CAS  Google Scholar 

  • Bray, E.A.: Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. — Plant Cell Environ. 25: 153–161, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Čatský, J.: Determination of water deficit in disks cut out from leaf blades. — Biol. Plant. 2: 76–78, 1960.

    Article  Google Scholar 

  • Colón-Guasp, W., Nell, T.A., Kane, M.E., Barrett, J.E.: Effects of abscisic acid on ex vitro acclimatization of Aronia arbutifolia (L.) Pers. — J. amer. Soc. hort. Sci. 121: 101–104, 1996.

    Google Scholar 

  • Cousson, A.: Involvement of phospholipase C-independent calcium-mediated abscisic acid signalling during Arabidopsis response to drought. — Biol. Plant. 53: 53–62, 2009.

    Article  CAS  Google Scholar 

  • Desjardins, Y., Dubuc, J.-F., Badr, A.: In vitro culture of plants: a stressful activity! — Acta Hort. 812: 29–50, 2009.

    CAS  Google Scholar 

  • Estrada-Luna, A.A., Davies, F.T., Jr., Egilla, J.N.: Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. — Plant Cell Tissue Organ Cult. 66: 17–24, 2001.

    Article  CAS  Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • Giraudat, J., Parcy, F., Bertauche, N., Gost, F., Leung, J., Morris, P.-C., Bouvier-Durand, M., Vartanian, N.: Current advances in abscisic acid action and signalling. — Plant mol. Biol. 26: 1557–1577, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Q.Z., Guo, Y.H., Sui, X.L., Li, W., Zhang, Z.X.: Changes in photosynthetic capacity and antioxidant enzymatic systems in micropropagated Zingiber officinale plantlets. — Photosynthetica 46: 193–201, 2008.

    Article  CAS  Google Scholar 

  • Haisel, D., Pospíšilová, J., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants as affected by CO2 supply. — Biol. Plant. 42: 463–468, 1999.

    Article  CAS  Google Scholar 

  • Haisel, D., Pospíšilová, J., Synková, H., Schnablová, R., Baťková, P.: Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. — Photosynthetica 44: 606–614, 2006.

    Article  CAS  Google Scholar 

  • Haisel, D., Vaňková, R., Synková, H., Pospíšilová, J.: The impact of trans-zeatin O-glucosyltransferase gene overexpression in tobacco on pigment content and gas exchange. — Biol. Plant. 52: 49–58, 2008.

    Article  CAS  Google Scholar 

  • Ivanov, A.G., Krol, M., Maxwell, D., Huner, N.P.A.: Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. — FEBS Lett. 371: 61–64, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, M.-W., Ali, M.B., Hahn, E.-J., Paek, K.-Y.: Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. — Environ. exp. Bot. 55: 183–194, 2006.

    Article  CAS  Google Scholar 

  • Jia, H., Lu, C.: Effects of abscisic acid on photoinhibition in maize plants. — Plant Sci. 165: 1403–1410, 2003.

    Article  CAS  Google Scholar 

  • Jiang, F., Hartung, W.: Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. — J. exp. Bot. 59: 37–43, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Majada, J.P., Luz Centeno, M., Feito, I., Fernándéz, B., Sanchez-Tames, R.: Stomatal and cuticular traits on carnation tissue culture under different ventilation conditions. — Plant Growth Regul. 25: 113–121, 1998.

    Article  CAS  Google Scholar 

  • Mizrahi, Y., Scherings, S.G., Arad, S.M., Richmond, A.E.: Aspects of the effects of ABA on the water status of barley and wheat sedlings. — Physiol. Plant. 31: 44–50, 1974.

    Article  CAS  Google Scholar 

  • Pandey, D.M., Yu, K.W., Wu, R.Z., Hahn, E.-J., Paek, K.-Y.: Effects of different irradiances on the photosynthetic process during ex-vitro acclimation of Anoectochilus plantlets. — Photosynthetica 44: 419–424, 2006.

    Article  CAS  Google Scholar 

  • Pospíšilová, J.: Hardening by abscisic acid of tobacco plantlets grown in vitro. — Biol. Plant. 38: 605–609, 1996.

    Article  Google Scholar 

  • Pospíšilová, J., Baťková, P.: Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration. — Biol. Plant. 48: 395–399, 2004.

    Article  Google Scholar 

  • Pospíšilová, J., Haisel, D., Synková, H., Čatský, J., Wilhelmová, N., Plzáková, Š., Procházková, D.: Photosynthetic pigments and gas exchange of in vitro grown tobacco plants during ex vitro acclimation. — Plant Cell Tissue Organ Cult. 61: 125–133, 2000.

    Article  Google Scholar 

  • Pospíšilová, J., Synková, H., Haisel, D., Baťková, P.: Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. — Biol. Plant. 53: 11–20, 2009.

    Article  Google Scholar 

  • Pospíšilová, J., Synková, H., Haisel, D., Semorádová, Š.: Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid. — Acta Hort. 748: 29–38, 2007.

    Google Scholar 

  • Pospíšilová, J., Tichá, I., Kadleček, P., Haisel, D., Plzáková, Š.: Acclimatization of micropropagated plants to ex vitro conditions. — Biol. Plant. 42: 481–497, 1999.

    Article  Google Scholar 

  • Pospíšilová, J., Wilhelmová, N., Synková, H., Čatský, J., Krebs, D., Tichá, I., Hanáčková, B., Snopek, J.: Acclimation of tobacco plantlets to ex vitro conditions as affected by application of abscisic acid. — J. exp. Bot. 49: 863–869, 1998.

    Article  Google Scholar 

  • Rezaei Nejad, A., Van Meeteren, U.: The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative humidity. — J. exp. Bot. 58: 627–636, 2007.

    Article  Google Scholar 

  • Rezaei Nejad, A., Van Meeteren, U.: Dynamics of adaptation of stomatal behaviour to moderate or high air humidity in Tradescantia virginiana. — J. exp. Bot. 59: 289–301, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Roy Chowdhury, S., Ashwani Kumar, Sahoo, N.: Diurnal changes in chlorophyll fluorescence and light utilization in Colocasia esculenta leaves grown in marshy waterlogged area. — Biol. Plant. 53: 167–170, 2009.

    Article  Google Scholar 

  • Saxena, S.N., Kaushik, N., Sharma, R.: Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. — Biol. Plant. 52: 181–183, 2008.

    Article  CAS  Google Scholar 

  • Semorádová, Š., Synková, H., Pospíšilová, J.: Responses of tobacco plantlets to change of irradiance during transfer from in vitro to ex vitro conditions. — Photosynthetica 40: 605–614, 2002.

    Article  Google Scholar 

  • Siddique, I., Anis, M.: An improved plant regeneration system and ex vitro acclimatization of Ocimum basilicum L. — Acta physiol. Plant. 30: 493–499, 2008.

    Article  CAS  Google Scholar 

  • Song, X.-G., She, X.-P., Zhang, B.: Carbon monooxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. — Physiol. Plant. 132: 514–525, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Špundová, M., Popelková, H., Ilík, P., Skotnica, J., Novotný, R., Nauš, J.: Ultrastructural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. — J. Plant Physiol. 160: 1051–1058, 2003.

    Article  PubMed  Google Scholar 

  • Trillas, M.I., Serret, M.D., Jorba, J., Araus, J.L.: Leaf chlorophyll fluorescence changes during acclimatization of the rootstock GF677 (peach × almond) and propagation of Gardenia jasminoïdes E. — In: Carre, F., Chagvardieff, P. (ed.): Ecophysiology and Photosynthetic in vitro Cultures. Pp. 161–168. CEA, Saint-Paul-lez-Durance 1995.

    Google Scholar 

  • Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Xiong, L., Zhu, J.-K.: Regulation of abscisic acid biosynthesis. — Plant Physiol. 133: 29–36, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.-H., Yeh, D.M.: In vitro leaf anatomy, ex vitro photosynthetic behaviors and growth of Calathea orbifolia (Linden) Kennedy plants obtained from semi-solid and temporary immersion systems. — Plant Cell Tissue Organ Cult. 93: 201–207, 2008.

    Article  CAS  Google Scholar 

  • Zhou, B., Guo, Z.: Calcium is involved in the abscisic acidinduced ascorbate peroxidase, superoxide dismutase and chilling resistance in Stylosanthes guianensis. — Biol. Plant. 53: 63–68, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pospíšilová.

Additional information

The article is dedicated to our colleagues Dr. Jiří Čatský and Dr. Zdeněk Šesták passing away last year.

Acknowledgements: We are grateful to Ing. B. Pešek and Ing. A. Trávníčková for kind determination of endogenous abscisic acid contents and Mrs. L. Hávová and Mrs. L. Kolčabová for technical assistance during plant cultivation and gas exchange measurements. This work was supported by Grant Agency of the Czech Republic (grant No. 522/07/0227).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšilová, J., Haisel, D., Synková, H. et al. Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol Plant 53, 617–624 (2009). https://doi.org/10.1007/s10535-009-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0113-0

Additional key words

Navigation