Skip to main content
Log in

Somatic embryogenesis from immature zygotic embryos and monitoring the genetic fidelity of regenerated plants in grapevine

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

BA:

6-benzyladenine

MS:

Murashige and Skoog medium

NAA:

α-naphthalene acetic acid

NN:

Nitsch and Nitsch medium

References

  • Bhatia, P., Ashwath, N., Senaratna, T., Krauss, S.L.: Genetic analysis of cotyledon derived regenerants of tomato using AFLP markers.-Curr. Sci. 88: 280–284, 2005.

    Google Scholar 

  • Emershad, R.L., Ramming, D.W.: Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L.).-Plant Cell Rep. 14: 6–12, 1994.

    Article  CAS  Google Scholar 

  • Fourre, J.L., Berger, P., Niquet, L., Andre, P.: Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches.-Theor. appl. Genet. 94: 159–169, 1997.

    Article  Google Scholar 

  • Galbraith, D.H., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, E.: Rapid flow cytometric analysis of the cell cycle in intact plant tissue.-Science 220: 1049–1051, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Gesteira, A.S., Otoni, W.C., Barros, E.G., Moreira, M.A.: RAPD-based detection of genomic instability in soybean plants derived from somatic embryogenesis.-Plant Breed. 121: 269–271, 2002.

    Article  CAS  Google Scholar 

  • Hanania, U., Velcheva, M., Sahar, N., Perl, A.: An improved method for isolating high-quality DNA from Vitis vinifera nuclei.-Plant mol. Biol. 22: 173–177, 2004.

    Article  Google Scholar 

  • Hashmi, G., Huettel, R., Meyer, R., Krusberg, L., Hammerschlag, F.: RAPD analysis of somaclonal variants derived from embryo callus cultures of peach.-Plant Cell Rep. 16: 624–627, 1997.

    Article  CAS  Google Scholar 

  • Heinze, B., Schmidt, J., Cassells, A.C., Jones, P.W.: Monitoring genetic fidelity vs. somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis.-Euphytica 85: 341–345, 1995.

    Article  CAS  Google Scholar 

  • Iocco, P., Franks, T., Thomas, M.R.: Genetic transformation of major wine grape cultivars of Vitis vinifera L.-Transgenic Res. 10: 105–112, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S., Ishimaru, M., Hiraoka, K., Honda, C.: Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis.-Planta 215: 924–933, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kunitake, H., Nakashima, T., Mori, K., Tanaka, M.: Somaclonal and chromosomal effects of genotype, ploidy and culture duration in Asparagus officinalis L.-Euphytica 102: 309–316, 1998.

    Article  Google Scholar 

  • Larkin, P.J., Scowcroft, W.R.: Somaclonal variation. A novel source of variability from cell cultures for plant improvement.-Theor. appl. Genet. 60: 197–214, 1981.

    Article  Google Scholar 

  • Latto, S.K., Bamotra, S., Dhar, R.S., Khan, S., Dhar, A.K.: Rapid plant regeneration and analysis of genetic fidelity of in vitro derived plants of Chlorophytum arundinaceum Baker — an endangered medicinal herb.-Plant Cell Rep. 25: 499–506, 2006.

    Article  Google Scholar 

  • Loureiro, J., Capelo, A., Brito, G., Rodriguez, E., Silva, S., Pinto, G., Santos, C.: Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry.-Biol. Plant. 51: 7–14, 2007.

    Article  CAS  Google Scholar 

  • Loureiro, J., Pinto, G., Lopes, T., Doležel, C., Santos, C.: Assessment of ploidy stability of somatic embryogenesis process in Quercus suber L. using flow cytometry.-Planta 221: 815–822, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Motoike, S.Y., Skirvin, R.M., Norton, M.A., Otterbacher, A.G.: Somatic embryogenesis and long term maintenance of embryogenic lines from fox grapes.-Plant Cell Tissue Organ Cult. 66: 121–131, 2001.

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Physiol. Plant. 15: 473–479, 1962.

    Article  CAS  Google Scholar 

  • Nitsch, J.P., Nitsch, C.: Haploid plants from pollen grains.-Science 163: 85–87, 1969.

    Article  PubMed  Google Scholar 

  • Pinto, G., Loureiro, J., Lopes, T., Santos, C.: Analysis of the genetic stability of Eucalyptus globulus Labill somatic embryos by flow cytometry.-Theor. appl. Genet. 109: 580–587, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rady, M.R.: In vitro culture of Gypsophila paniculata L. and random amplified polymorphic DNA analysis of the propagated plants.-Biol. Plant. 50: 507–513, 2006.

    Article  CAS  Google Scholar 

  • Rani, V., Parida, A., Raina, S.N.: Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh.-Plant Cell Rep. 14: 459–462, 1995.

    Article  CAS  Google Scholar 

  • Rani, V., Raina, S.N.: Genetic fidelity of organized meristem derived micropropagated plants: a critical reappraisal.-In Vitro cell dev. Biol. Plant. 36: 319–330, 2000.

    Article  CAS  Google Scholar 

  • Saker, M.M., Adawy, S.S., Mohamed, A.A., El-Itriby, H.A.: Monitoring of cultivar identity RAPD in tissue culture-derived date palms using RAPD and AFLP analysis.-Biol. Plant. 50: 198–204, 2005.

    Article  Google Scholar 

  • Vicient, C.M., Martínez, F.X.: The potential uses of somatic embryogenesis in agroforestry are not limited to synthetic seed technology.-Rev. Bras. Fisiol. Veg. 10: 1–12, 1998.

    Google Scholar 

  • Wang, Q.C., Mawassi, M., Sahar, N., Li, P., Violeta, C.T., Gafny, R., Sela, I., Tanne, E., Perl, A.: Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspension by encapsulation-vitrification.-Plant Cell Tissue Organ Cult. 77: 267–275, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.M., An, L.Z., Xiong, Y.C. et al. Somatic embryogenesis from immature zygotic embryos and monitoring the genetic fidelity of regenerated plants in grapevine. Biol Plant 52, 209–214 (2008). https://doi.org/10.1007/s10535-008-0047-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0047-y

Additional key words

Navigation