Skip to main content

Advertisement

Log in

Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The implications of stream flow intermittency for dissolved organic matter (DOM) are not well understood despite its potential significance for water quality and ecosystem integrity. We combined intensive sampling with liquid chromatography and spectroscopic techniques to follow changes in DOC and DON concentrations as well as in DOM size fractions and spectroscopic properties in a temporary stream during an entire contraction–fragmentation–expansion hydrological cycle. DOC and DON concentrations remained low (range = 1.4–5.2 mg C L−1 and 0.05–0.15 mg N L−1) during hydrological contraction and fragmentation, with concomitant increases in the proportion of high molecular weight substances (HMWS) during contraction and of DOM aromaticity during fragmentation. DOC and DON concentrations abruptly increased (up to 8.8 mg C L−1 and 0.37 mg N L−1) at the end of the fragmentation phase, with a concomitant increase in the non-humic, microbial and aquatic character of DOM. Upon rewetting, the DOC and DON concentrations reached their highest values (up to 12.7 mg C L−1 and 0.39 mg N L−1), with concomitant increases in the proportion of HMWS and in the humic, aromatic and terrestrial character of DOM. Subsequently, DOC and DON concentrations recovered to values similar to those at the contraction phase, while DOM composition variables indicated the prevalence of a DOM of humic and terrestrial character during the whole expansion phase. Overall, our results emphasize the importance of hydrological transitions for DOM dynamics in temporary streams, and point to the potential response of perennial streams under future water scarcity scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acuña V, Muñoz I, Giorgi A et al (2005) Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. J North Am Benthol Soc 24:919–933

    Article  Google Scholar 

  • Acuña V, Giorgi A, Muñoz I et al (2007) Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. J North Am Benthol Soc 26:54–69

    Article  Google Scholar 

  • Acuña V, Datry T, Marshall J et al (2014) Why should we care about temporary waterways? Science 343:1080–1081

    Article  Google Scholar 

  • Ågren A, Berggren M, Laudon H, Jansson M (2008) Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–972

    Article  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  Google Scholar 

  • Artigas J, Romani AM, Gaudes A et al (2009) Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshw Biol 54:2025–2036

    Article  Google Scholar 

  • Attermeyer K, Hornick T, Kayler ZE et al (2014) Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 11:1479–1489

    Article  Google Scholar 

  • Bernal S, Butturini A, Sabater F (2005) Seasonal variations of dissolved nitrogen and DOC:DON ratios in an intermittent Mediterranean stream. Biogeochemistry 75:351–372

    Article  Google Scholar 

  • Bernal S, von Schiller D, Sabater F, Martí E (2013) Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42

    Article  Google Scholar 

  • Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29

    Article  Google Scholar 

  • Boulton AJ, Lake PS (1990) The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshw Biol 24:123–141

    Article  Google Scholar 

  • Boulton AJ, Lake PS (1992) Benthic organic matter and detritivorous macroinvertebrates in two intermittent streams in south-eastern Australia. Hydrobiologia 241:107–118

    Article  Google Scholar 

  • Catalán N, Obrador B, Alomar C, Pretus JL (2013) Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes. Biogeochemistry 112:261–274

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  Google Scholar 

  • Dahm CN (1981) Pathways and mechanisms for removal of dissolved organic carbon from leaf leachate in streams. Can J Fish Aquat Sci 38:68–76

  • Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshw Biol 48:1219–1231

    Article  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235

    Article  Google Scholar 

  • De Haan H, De Boer T (1987) Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Res 21:731–734

    Article  Google Scholar 

  • Dent CL, Grimm NB (1999) Spatial heterogeneity of stream water nutrient concentrations over successional time. Ecology 80:2283–2298

    Article  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E (2008) An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci Total Environ 392:305–312

    Article  Google Scholar 

  • Fellman JB, D’Amore DV, Hood E et al (2009) Changes in the concentration, biodegradability, and fluorescence properties of dissolved organic matter during storm flows in coastal temperate watersheds. J Geophys Res 114:277–293. doi:10.1029/2008JG000790

    Google Scholar 

  • Fellman JB, Dogramaci S, Skrzypek G et al (2011) Hydrologic control of dissolved organic matter biogeochemistry in pools of a subtropical dryland river. Water Resour Res. doi:10.1029/2010WR010275

    Google Scholar 

  • Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57:1453

    Article  Google Scholar 

  • Findlay S, Sinsabaugh RL (2003) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, San Diego

    Google Scholar 

  • Freeman C, Gresswell R, Guasch H et al (1994) The role of drought in the impact of climatic change on the microbiota of peatland stream. Freshw Biol 32:223–230

    Article  Google Scholar 

  • Gómez R, García V, Vidal-Abarca R et al (2009) Effect of intermittency on N spatial variability in an arid Mediterranean stream. J N Am Benthol Soc 28:572–583

    Article  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL (2004) Stream hydrology: an introduction for ecologists. Wiley, West Sussex

    Google Scholar 

  • Graeber D, Gelbrecht J, Kronvang B et al (2012a) Technical Note: comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations. Biogeosciences 9:4873–4884

    Article  Google Scholar 

  • Graeber D, Gelbrecht J, Pusch MT et al (2012b) Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci Total Environ 438:435–446

    Article  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916

    Article  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography–organic carbon detection–organic nitrogen detection (LC-OCD-OND). Water Res 45:879–885

    Article  Google Scholar 

  • Hudson N, Baker A, Reynolds DM et al (2009) Changes in freshwater organic matter fluorescence intensity with freezing/thawing and dehydration/rehydration. J Geophys Res. doi:10.1029/2008JG000915

    Google Scholar 

  • Humphries P, Baldwin DS (2003) Drought and aquatic ecosystems: an introduction. Freshw Biol 48:1141–1146

    Article  Google Scholar 

  • Inamdar S, Singh S, Dutta S et al (2011) Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. J Geophys Res. doi:10.1029/2011JG001735

    Google Scholar 

  • IPCC (2013) Climate Change 2013. The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

  • Jacobson PJ, Jacobson KM, Angermeier PL, Cherry DS (2000) Variation in material transport and water chemistry along a large ephemeral river in the Namib Desert. Freshw Biol 44:481–491

    Article  Google Scholar 

  • Johnson SL (2004) Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Can J Fish Aquat Sci 61:913–923

    Article  Google Scholar 

  • Keil RG, Kirchman DL (1991) Contribution of dissolved amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton. Mar Ecol Prog Ser 73:1–10

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshwat Biol 48:1161–1172

    Article  Google Scholar 

  • Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley, Oxford

    Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738

  • Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63:936–940

    Article  Google Scholar 

  • Lindell MJ, Graneli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:195–199

    Article  Google Scholar 

  • McArthur MD, Richardson JS (2002) Microbial utilization of dissolved organic carbon leached from riparian litterfall. Can J Fish Aquat Sci 59:1668–1676

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  Google Scholar 

  • McDowell WH (1985) Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream. Biogeochemistry 1:329–352

    Article  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  Google Scholar 

  • McMaster D, Bond NR (2008) A field and experimental study on the tolerance of fish to Eucalyptus camaldulensis leachate and low dissolved oxygen concentrations. Mar Freshw Res 59:177–185

    Article  Google Scholar 

  • Nadeau TL, Rains MC (2007) Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J Am Water Resour Assoc 43:118–133

    Article  Google Scholar 

  • Nguyen HVM, Hur J, Shin HS (2010) Changes in spectroscopic and molecular weight characteristics of dissolved organic matter in a river during a storm event. Water Air Soil Poll 212:395–406

    Article  Google Scholar 

  • Nikolaidis NP, Demetropoulou L, Froebrich J et al (2013) Towards sustainable management of Mediterranean river basins: policy recommendations on management aspects of temporary streams. Water Policy 15:830–849

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781

    Article  Google Scholar 

  • Pellerin BA, Saraceno JF, Shanley JB et al (2012) Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry 108:183–198

    Article  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Article  Google Scholar 

  • Pfeifer D, Hoffmann K, Hoffmann A et al (2006) The Calibration Kit Spectral Fluorescence Standards—A simple and certified tool for the standardization of the spectral characteristics of fluorescence instruments. J Fluoresc 16:581–587

    Article  Google Scholar 

  • Prairie YT (2008) Carbocentric limnology: looking back, looking forward. Can J Fish Aquat Sci 65:543–548

    Article  Google Scholar 

  • Prat N, Gallart F, von Schiller D et al (2014) The MIRAGE Toolbox: an integrated assessment tool for temporary streams. River Res Appl 30:1318–1334

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  • Rodríguez-Zuniga UF, Milori DMBP, Da Silva WTL et al (2008) Changes in optical properties caused by UV-irradiation of aquatic humic substances from the amazon river basin: seasonal variability evaluation. Environ Sci Technol 42:1948–1953

    Article  Google Scholar 

  • Romaní AM, Vázquez E, Butturini A (2006) Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. Microb Ecol 52:501–512

    Article  Google Scholar 

  • Sabater S, Tockner K (2010) Effects of hydrologic alterations on the ecological quality of river ecosystems. In: Sabater S, Barceló D (eds) Water scarcity in the Mediterranean. Perspectives under global change. Springer, New York, pp 15–39

    Chapter  Google Scholar 

  • Sachse A, Babenzien D, Ginzel G et al (2001) Characterization of dissolved organic carbon (DOC) in a dystrophic lake and an adjacent fen. Biogeochemistry 54:279–296

    Article  Google Scholar 

  • Schimel JP, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

  • Singh S, Inamdar S, Mitchell M, McHale P (2014) Seasonal pattern of dissolved organic matter (DOM) in watershed sources: influence of hydrologic flow paths and autumn leaf fall. Biogeochemistry 118:321–333

    Article  Google Scholar 

  • Spencer RG, Hernes PJ, Ruf R, Baker A, Dyda RY, Stubbins A, Six J (2010) Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo. J Geophys Res. doi:10.1029/2009JG001180

    Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Ocean Methods 6:572–579

    Article  Google Scholar 

  • Stedmon CA, Markager S (2005) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:1415–1426

    Article  Google Scholar 

  • Steward AL, von Schiller D, Tockner K et al (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–209

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29:118–146

    Article  Google Scholar 

  • Timoner X, Acuña V, von Schiller D, Sabater S (2012) Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw Biol 57:1565–1578

    Article  Google Scholar 

  • Tornés E, Sabater S (2010) Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream. Mar Freshw Res 61:441–450

    Article  Google Scholar 

  • Tzoraki O, Nikolaidis NP, Amaxidis Y, Skoulikidis NT (2007) Instream biogeochemical processes of a temporary river. Environ Sci Technol 41:1225–1231

    Article  Google Scholar 

  • Uys MC, O’Keefe JH (1997) Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environ Manag 21:517–531

    Article  Google Scholar 

  • Vazquez E, Amalfitano S, Fazi S, Butturini A (2011) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:59–72

    Article  Google Scholar 

  • Vazquez E, Acuña V, Artigas J et al (2013) Fourteen years of hydro-biogeochemical monitoring in a Mediterranean catchment. Die Bodenkult 13:3–4

    Google Scholar 

  • Vázquez E, Romaní AM, Sabater F, Butturini A (2007) Effects of the dry-wet hydrological shift on dissolved organic carbon dynamics and fate across stream-riparian interface in a Mediterranean catchment. Ecosystems 10:239–251

    Article  Google Scholar 

  • Von Schiller D, Acuña V, Graeber D et al (2011) Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquat Sci 73:485–497

    Article  Google Scholar 

  • Webster JR, Meyer JL (1997) Organic matter budgets for streams: a synthesis. J North Am Benthol Soc 16:141–161

    Article  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229:181–198

    Article  Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF et al (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171

    Article  Google Scholar 

  • Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41

    Article  Google Scholar 

  • Wilson HF, Xenopoulos MA (2013) Diel changes of dissolved organic matter in streams of varying watershed land use. River Res Appl 29:1330–1339

    Article  Google Scholar 

  • Yamashita Y, Jaffé R (2008) Characterizing the interactions between trace metals and dissolved organic matter using excitation—emission matrix and parallel factor analysis. Environ Sci Technol 42:7374–7379

    Article  Google Scholar 

  • Ylla I, Sanpera-Calbet I, Vázquez E et al (2010) Organic matter availability during pre-and post-drought periods in a Mediterranean stream. Hydrobiologia 657:217–232

    Article  Google Scholar 

  • Ylla I, Sanpera-Calbet I, Muñoz I et al (2011) Organic matter characteristics in a Mediterranean stream through amino acid composition: changes driven by intermittency. Aquat Sci 73:523–535

    Article  Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M et al (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Rodríguez, L. Proia, M. Peipoch and A. Blesa for field assistance, and E. Zwirnmann, H. J. Exner, A. Lüder, S. Schell and H. Magnussen for laboratory analyses. We are also grateful to the direction of the Montnegre-Corredor Natural Park (Diputació de Barcelona) for allowing access to the sampling site. This study was funded by the European Union through the MIRAGE project (FP7 ENV 2007 1). Additional funds were provided by the Spanish Ministry of Economy and Competitiveness through the Consolider-Ingenio projects SCARCE (CSD2009-00065) and GRACCIE (CSD2007-00067). D. von Schiller was supported by a DAAD-‘‘laCaixa’’ fellowship and a “Juan de la Cierva” postdoctoral grant (JCI-2010-06397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel von Schiller.

Additional information

Responsible Editor: Sujay Kaushal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Schiller, D., Graeber, D., Ribot, M. et al. Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry 123, 429–446 (2015). https://doi.org/10.1007/s10533-015-0077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0077-4

Keywords

Navigation