Skip to main content

Advertisement

Log in

Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Anthropogenic disturbance in natural environments may cause unfavorable habitat conditions in which old species are lost, or new species are introduced. These interventions could affect biodiversity. However, rapidly advancing environmental DNA (eDNA) methodologies can be used to recover imprints of the lost biodiversity from the environment through sampling on regional and geographical scales. Furthermore, the degradation of eDNA may affect its persistence, consequently affecting species occurrence and distribution data. Understanding various factors that regulate eDNA dynamics in the environment can help scientists identify the organisms that existed earlier in the particular environment to discover relationships with active species and improve biodiversity studies. This review summarizes how biofilms, mineralogy, temperature, microorganisms, chemicals and DNA fragment length affect the eDNA dynamics in aquatic environments. This study also elaborates how these factors can help identify the missing species in the given environment. This knowledge will further improve biomonitoring, conservation efforts, documentation of species diversity and future interpretation of eDNA detection in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abe, K., N. Nomura & S. Suzuki, 2020. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments focus on a new HGT mechanism. FEMS Microbiology Ecology 96(5): 031.

    Article  Google Scholar 

  • Allentoft, M. E., M. Collins, D. Harker, J. Haile, C. L. Oskam, M. L. Hale, P. F. Campos, J. A. Samaniego, M. T. P. Gilbert, E. Willerslev, G. Zhang, R. P. Scofield, R. N. Holdaway & M. Bunce, 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences 279(1748): 4724–4733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov, R. I., 2011. Horizontal gene exchange in environmental microbiota. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2011.00158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andruszkiewicz, E. A., H. A. Starks, F. P. Chavez, L. M. Sassoubre, B. A. Block & A. B. Boehm, 2017. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLOS ONE 12(4): e0176343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes, A. M. & R. C. Turner, 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. https://doi.org/10.1007/s10592-015-0775-4.

    Article  Google Scholar 

  • Bedwell, M. E. & C. S. Goldberg, 2020. Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems. Ecology and Evolution 10(3): 1602–1612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bista, I., G. R. Carvalho, K. Walsh, M. Seymour, M. Hajibabaei, D. Lallias, M. Christmas & S. Creer, 2017. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications 8(1): 14087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochove, K., F. T. Bakker, K. K. Beentjes, L. Hemerik, R. A. Vos & B. Gravendeel, 2020. Organic matter reduces the amount of detectable environmental DNA in freshwater. Ecology and Evolution 10(8): 3647–3654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandt, M. I., B. Trouche, N. Henry, C. Liautard-Haag, L. Maignien, C. de Vargas, P. Wincker, J. Poulain, D. Zeppilli & S. Arnaud-Haond, 2020. An assessment of environmental metabarcoding protocols aiming at favoring recent biodiversity in inventories of deep-sea communities. Frontiers in Marine Science 7: 234.

    Article  Google Scholar 

  • Buxton, A. S., J. J. Groombridge & R. A. Griffiths, 2017. Is the detection of aquatic environmental DNA influenced by substrate type? PLOS ONE 12(8): e0183371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderón-Franco, D., M. C. M. van Loosdrecht, T. Abeel & D. G. Weissbrodt, 2020. A novel method to isolate free-floating extracellular DNA from wastewater for quantitation and metagenomic profiling of mobile genetic elements and antibiotic resistance genes. Molecular Biology. https://doi.org/10.1101/2020.05.01.072397.

    Article  Google Scholar 

  • Carim, K. J., N. J. Bean, J. M. Connor, W. P. Baker, M. Jaeger, M. P. Ruggles, K. S. McKelvey, T. W. Franklin, M. K. Young & M. K. Schwartz, 2020. Environmental DNA sampling informs fish eradication efforts: case studies and lessons learned. North American Journal of Fisheries Management 40(2): 488–508.

    Article  Google Scholar 

  • Carraro, L., E. Mächler, R. Wüthrich & F. Altermatt, 2020. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature Communications 11(1): 3585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso, G., 2020. Microbial colonization in marine environments: overview of current knowledge and emerging research topics. Journal of Marine Science and Engineering 8(2): 78.

    Article  Google Scholar 

  • Ceccherini, M. T., J. Ascher, A. Agnelli, F. Borgogni, O. L. Pantani & G. Pietramellara, 2009. Experimental discrimination and molecular characterization of the extracellular soil DNA fraction. Antonie Van Leeuwenhoek 96(4): 653–657.

    Article  CAS  PubMed  Google Scholar 

  • Collins, R. A., O. S. Wangensteen, E. J. O’Gorman, S. Mariani, D. W. Sims & M. J. Genner, 2018. Persistence of environmental DNA in marine systems. Communications Biology 1(1): 185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corinaldesi, C., F. Beolchini & A. Dell’Anno, 2008. Damage and degradation rates of extracellular DNA in marine sediments: implications for preserving gene sequences. Molecular Ecology 17(17): 3939–3951.

    Article  CAS  PubMed  Google Scholar 

  • Corinaldesi, Cinzia, R. Danovaro & A. Dell’Anno, 2005. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Applied and Environmental Microbiology 71(1): 46–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristescu, M. E. & P. D. N. Hebert, 2018. Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics 49(1): 209–230.

    Article  Google Scholar 

  • Dabney, J., M. Meyer & S. Paabo, 2013. Ancient DNA damage. Cold Spring Harbor Perspectives in Biology 5(7): a012567–a012567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Danovaro, R., Corinaldesi, C., Luna, G. M., & Dell’Anno, A. (2006). Molecular Tools for the Analysis of DNA in Marine Environments. In J. K. Volkman (Ed.), Marine Organic Matter: Biomarkers, Isotopes and DNA (Vol. 2N, pp. 105–126). Springer, Berlin.

  • Díaz-Ferguson, E. E. & G. R. Moyer, 2014. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Revista De Biología Tropical 62(4): 1273.

    Article  PubMed  Google Scholar 

  • Dincer, S. & M. F. Uslu, 2020. Antibiotic resistance in biofilm. Open Access Peer-Reviewed Chapter. https://doi.org/10.5772/intechopen.92388.

    Article  Google Scholar 

  • Donlan, R. M. & J. W. Costerton, 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. CLIN. MICROBIOL. REV. 15: 27.

    Article  Google Scholar 

  • Eckstein, D., Winges, M., Künzel, V., Schäfer, L., & Germanwatch. (2019). Global Climate Risk Index 2020 Who Suffers Most from Extreme Weather Events? Wether-Related Loss Events in 2018 and 1999 to 2018.

  • Eichmiller, J. J., S. E. Best & P. W. Sorensen, 2016. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology 50(4): 1859–1867.

    Article  CAS  Google Scholar 

  • Eichmiller, J. J., P. G. Bajer & P. W. Sorensen, 2014. The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS ONE 9(11): e112611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg, C. S., K. M. Strickler & A. K. Fremier, 2018. Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: increasing efficacy of sampling designs. Science of the Total Environment 633: 695–703.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, C. S., K. M. Strickler & D. S. Pilliod, 2015. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biological Conservation 183: 1–3.

    Article  Google Scholar 

  • Harper, L. R., A. S. Buxton, H. C. Rees, K. Bruce, R. Brys, D. Halfmaerten, D. S. Read, H. V. Watson, C. D. Sayer, E. P. Jones, V. Priestley, E. Mächler, C. Múrria, S. Garcés-Pastor, C. Medupin, K. Burgess, G. Benson, N. Boonham, R. A. Griffiths & B. Hänfling, 2019. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826(1): 25–41.

    Article  CAS  Google Scholar 

  • Harrison, J. B., J. M. Sunday & S. M. Rogers, 2019. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B: Biological Sciences 286(1915): 20191409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, S., T. Siddique, M. Saleem, M. Arshad & A. Khalid, 2009. Chapter 5. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy 102: 159–200.

    Article  CAS  Google Scholar 

  • Jakubovics, N. S., R. C. Shields, N. Rajarajan & J. G. Burgess, 2013. Life after death: The critical role of extracellular DNA in microbial biofilms. Letters in Applied Microbiology 57(6): 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Jo, T., M. Arimoto, H. Murakami, R. Masuda & T. Minamoto, 2019a. Particle size distribution of environmental DNA from the nuclei of marine fish. Environmental Science and Technology 53(16): 9947–9956.

    Article  CAS  PubMed  Google Scholar 

  • Jo, T., M. Arimoto, H. Murakami, R. Masuda & T. Minamoto, 2019b. Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA. https://doi.org/10.1002/edn3.51.

    Article  Google Scholar 

  • Jo, T., H. Murakami, R. Masuda & T. Minamoto, 2020. Selective collection of long fragments of environmental DNA using larger pore size filter. Science of the Total Environment 735: 139462.

    Article  CAS  PubMed  Google Scholar 

  • Jo, T., H. Murakami, R. Masuda, M. K. Sakata, S. Yamamoto & T. Minamoto, 2017. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology and Resource 17: e25–e33.

    Article  CAS  Google Scholar 

  • Kasai, A., S. Takada, A. Yamazaki, R. Masuda & H. Yamanaka, 2020. The effect of temperature on environmental DNA degradation of Japanese eel. Fisheries Science 86(3): 465–471.

    Article  CAS  Google Scholar 

  • Khanna, M. & G. Stotzky, 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Applied Environmental Microbiology 58: 1930–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurniawan, A. & T. Yamamoto, 2019. Accumulation of NH4+ and NO3− inside biofilms of natural microbial consortia: implication on nutrients seasonal dynamic in aquatic ecosystems. International Journal of Microbiology 2019: 1–7.

    Article  Google Scholar 

  • Lance, R., K. Klymus, C. Richter, X. Guan, H. Farrington, M. Carr, N. Thompson, D. Chapman & K. Baerwaldt, 2017. Experimental observations on the decay of environmental DNA from bighead and silver carps. Management of Biological Invasions 8(3): 343–359.

    Article  Google Scholar 

  • Lear, G., A. Dopheide, Y. P. Ancion, K. Roberts, V. Washington, J. Smith & D. G. Lewis, 2012. Biofilms in Freshwater: Their Importance for the Maintenance and Monitoring of Freshwater Health, Caister Academic Press, London:

    Google Scholar 

  • Levy-Booth, D. J., I. J. W. Giesbrecht, C. T. E. Kellogg, T. J. Heger, D. V. D’Amore, P. J. Keeling, S. J. Hallam & W. W. Mohn, 2019. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. The ISME Journal 13(4): 950–963.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, M. G., B. W. Aardema & W. E. Krumbein, 1981. Interaction of marine sediment with DNA and DNA availability to nucleases. Marine Biology 64(2): 225–230.

    Article  CAS  Google Scholar 

  • Luo, Z., Q. Shao, Q. Zuo & Y. Cui, 2020. Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. Journal of Hydrology 584: 124655.

    Article  Google Scholar 

  • Marshall, N. T., H. A. Vanderploeg & S. R. Chaganti, 2021. Environmental (e)RNA advances the reliability of eDNA by predicting its age. Scientific Reports 11(1): 2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikutis, G., L. Schmid, W. J. Stark & R. N. Grass, 2019. Length-dependent DNA degradation kinetic model: decay compensation in DNA tracer concentration measurements. AIChE Journal 65(1): 40–48.

    Article  CAS  Google Scholar 

  • Moushomi, R., G. Wilgar, G. Carvalho, S. Creer & M. Seymour, 2019. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Scientific Reports 9(1): 12500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyer, G. R., E. Díaz-Ferguson, J. E. Hill & C. Shea, 2014. Assessing environmental DNA detection in controlled lentic systems. PLoS ONE 9(7): e103767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagler, M., H. Insam, G. Pietramellara & J. Ascher-Jenull, 2018. Extracellular DNA in natural environments: features, relevance and applications. Applied Microbiology and Biotechnology 102(15): 6343–6356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagler, M., S. M. Podmirseg, M. Mayr, J. Ascher-Jenull & H. Insam, 2020. Quantities of intra- and extracellular DNA reveal information about activity and physiological state of methanogenic archaea. Frontiers in Microbiology 11: 1894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagler, M., S. M. Podmirseg, M. Mayr, J. Ascher-Jenull & H. Insam, 2021. The masking effect of extracellular DNA and robustness of intracellular DNA in anaerobic digester NGS studies: A discriminatory study of the total DNA pool. Molecular Ecology 30(2): 438–450.

    Article  CAS  PubMed  Google Scholar 

  • Nevers, M. B., M. N. Byappanahalli, C. C. Morris, D. Shively, K. Przybyla-Kelly, A. M. Spoljaric, J. Dickey & E. F. Roseman, 2018. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). PLOS ONE 13(1): e0191720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nevers, M. B., K. Przybyla-Kelly, D. Shively, C. C. Morris, J. Dickey & M. N. Byappanahalli, 2020. Influence of sediment and stream transport on detecting a source of environmental DNA. PLOS ONE 15(12): e0244086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, M. K., J. P. Johnsen, D. Bensasson & D. Daffonchio, 2007. Release and persistence of extracellular DNA in the environment. Environ Biosafety Res. https://doi.org/10.1051/ebr:2007031.

    Article  PubMed  Google Scholar 

  • Nukazawa, K., K. Akahoshi & Y. Suzuki, 2020. Are bacteria potential sources of fish environmental DNA? PLOS ONE 15(3): e0230174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogram, A., G. S. Sayler & T. Barkay, 1987. The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7(2–3): 57–66.

    Article  CAS  Google Scholar 

  • Pawlowski, J., L. Apothéloz-Perret-Gentil & F. Altermatt, 2020. Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology 29(22): 4258–4264.

    Article  PubMed  Google Scholar 

  • Pedersen, M. W., S. Overballe-Petersen, L. Ermini, C. D. Sarkissian, J. Haile, M. Hellstrom, J. Spens, P. F. Thomsen, K. Bohmann, E. Cappellini, I. B. Schnell, N. A. Wales, C. Carøe, P. F. Campos, A. M. Z. Schmidt, M. T. P. Gilbert, A. J. Hansen, L. Orlando & E. Willerslev, 2015. Ancient and modern environmental DNA. Philosophical Transactions of the Royal Society b: Biological Sciences 370(1660): 20130383.

    Article  Google Scholar 

  • Pourmoghadam, M. N., H. Poorbagher & J. M. De Oliveira Fernandes, 2019. Diazinon negatively affects the integrity of environmental DNA stability: a case study with common carp (Cyprinus carpio). Environ Monit Assess 191: 672.

    Article  CAS  PubMed  Google Scholar 

  • Rees, H. C., B. C. Maddison, D. J. Middleditch, J. R. M. Patmore & K. C. Gough, 2014. REVIEW: the detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51(5): 1450–1459.

    Article  CAS  Google Scholar 

  • Rivera, S. F., V. Vasselon, N. Mary, O. Monnier, F. Rimet & A. Bouchez, 2021. Exploring the capacity of aquatic biofilms to act as environmental DNA samplers: test on macroinvertebrate communities in rivers. Science of the Total Environment 763: 144208.

    Article  CAS  PubMed  Google Scholar 

  • Ruppert, K. M., R. J. Kline & M. S. Rahman, 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547.

    Article  Google Scholar 

  • Saito, T. & H. Doi, 2021a. Degradation modeling of water environmental DNA: experiments on multiple DNA sources in pond and seawater. Environmental DNA. https://doi.org/10.1002/edn3.192.

    Article  Google Scholar 

  • Saito, T. & H. Doi, 2021b. A model and simulation of the influence of temperature and amplicon length on environmental DNA degradation rates: a meta-analysis approach. Frontiers in Ecology and Evolution 9: 623831.

    Article  Google Scholar 

  • Sakata, M. K., S. Yamamoto, R. O. Gotoh, M. Miya, H. Yamanaka & T. Minamoto, 2020. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA 2(4): 505–518.

    Article  Google Scholar 

  • Salter, I., M. Joensen, R. Kristiansen, P. Steingrund & P. Vestergaard, 2019. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Communications Biology 2(1): 461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta, M. E., M. Hellström, H. C. Kariuki, A. Olsen, P. F. Thomsen, H. Mejer, E. Willerslev, M. T. Mwanje, H. Madsen, T. K. Kristensen, A.-S. Stensgaard & B. J. Vennervald, 2019. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proceedings of the National Academy of Sciences 116(18): 8931–8940.

    Article  CAS  Google Scholar 

  • Seymour, M., I. Durance, B. J. Cosby, E. Ransom-Jones, K. Deiner, S. J. Ormerod, J. K. Colbourne, G. Wilgar, G. R. Carvalho, M. de Bruyn, F. Edwards, B. A. Emmett, H. M. Bik & S. Creer, 2018. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology 1(1): 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seymour, M., F. K. Edwards, B. J. Cosby, I. Bista, P. M. Scarlett, F. L. Brailsford, H. C. Glanville, M. de Bruyn, G. R. Carvalho & S. Creer, 2021. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology 4(1): 512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shogren, A. J., J. L. Tank, S. P. Egan, O. August, E. J. Rosi, B. R. Hanrahan, M. A. Renshaw, C. A. Gantz & D. Bolster, 2018. Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environ. Sci. Technol. 52(15): 8530–8537.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, K. A. & S. A. Taylor, 2020. Leveraging eDNA to expand the study of hybrid zones. Molecular Ecology 29(15): 2768–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen, P. F. & E. Willerslev, 2015. Environmental DNA - an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.

    Article  Google Scholar 

  • Timi, J. T. & R. Poulin, 2020. Why ignoring parasites in fish ecology is a mistake. International Journal for Parasitology 50(10–11): 755–761.

    Article  PubMed  Google Scholar 

  • Torti, A., M. A. Lever & B. B. Jørgensen, 2015. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics 24: 185–196.

    Article  PubMed  Google Scholar 

  • Tripathi, A. D., R. Mishra, K. K. Maurya, R. B. Singh & D. W. Wilson, 2019. Estimates for world population and global food availability for global health. In The role of functional food security in global health (pp. 3–24). Academic Press.

  • Tsuji, S., M. Ushio, S. Sakurai, T. Minamoto & H. Yamanaka, 2017. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLOS ONE 12(4): e0176608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuillemin, A., F. Horn, M. Alawi, C. Henny, D. Wagner, S. A. Crowe & J. Kallmeyer, 2017. Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia. Frontiers in Microbiology 8: 1440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., G. Lu, L. Zhao, X. Du & T. Gao, 2021. Assessment of fishery resources using environmental DNA: the large yellow croaker (Larimichthys crocea) in the East China Sea. Fisheries Research 235: 105813.

    Article  Google Scholar 

  • Wei, N., F. Nakajima & T. Tobino, 2019. Variation of environmental DNA in sediment at different temporal scales in nearshore area of Tokyo Bay. Journal of Water and Environment Technology 17(3): 153–162.

    Article  Google Scholar 

  • Wood, S. A., L. Biessy, J. L. Latchford, A. Zaiko, U. von Ammon, F. Audrezet, M. E. Cristescu & X. Pochon, 2020. Release and degradation of environmental DNA and RNA in a marine system. Science of the Total Environment 704: 135314.

    Article  CAS  PubMed  Google Scholar 

  • Yin, W., Y. Wang, L. Liu & J. He, 2019. Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences 20(14): 3423.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang, W., W. Ding, Y.-X. Li, C. Tam, S. Bougouffa, R. Wang, B. Pei, H. Chiang, P. Leung, Y. Lu, J. Sun, H. Fu, V. B. Bajic, H. Liu, N. S. Webster & P.-Y. Qian, 2019. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nature Communications 10(1): 517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulkefli, N. S., K.-H. Kim & S.-J. Hwang, 2019. Effects of microbial activity and environmental parameters on the degradation of extracellular environmental DNA from a Eutrophic Lake. International Journal of Environmental Research and Public Health 16(18): 3339.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Marine ecology of the Ocean University of China for providing Laboratory resources. We also thank the anonymous reviewers for their suggestions.

Funding

The study was supported by the national key Research and Development Program of China (No. 2018YFC1407601).

Author information

Authors and Affiliations

Authors

Contributions

Joseph Chipuriro and Gang Chen conceived of the presented idea. Chipuriro Joseph conceptualization, writing review & editing. Mohammad Eshaq Faiq review. Gang Chen is writing reviews and editing. Zhengyan li, Funding Acquisition and Project Administration.

Corresponding authors

Correspondence to Zhengyan Li or Gang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Diego Fontaneto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, C., Faiq, M.E., Li, Z. et al. Persistence and degradation dynamics of eDNA affected by environmental factors in aquatic ecosystems. Hydrobiologia 849, 4119–4133 (2022). https://doi.org/10.1007/s10750-022-04959-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04959-w

Keywords

Navigation