Skip to main content

Advertisement

Log in

Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Seagrass beds occur globally and are substantial blue carbon sinks, yet factors that affect sediment organic carbon (SOC) sequestration are poorly characterized. We investigated the influences of eutrophication on SOC sequestration capacity in a mixed seagrass bed dominated by Thalassia hemprichii and Enhalus acoroides.

Methods

We surveyed a tropical seagrass bed in the South China Sea along fish farming-induced gradients of nutrients to assess the variability of SOC content and composition in 30-cm-long sediment cores.

Results

No significant difference was observed for the SOC content and stock between the two species. Significantly higher microbial biomass carbon and SOC density were observed at the surface 3 cm layer under E. acoroides, and the longer roots of E. acoroides enhanced the seagrass contribution to the SOC near the root tip. SOC had a statistically lower concentration in the sediment layers where the seagrass roots primarily thrive close to fish farming, but greater exchangeable organic carbon was found in all the sediment layers as they approached fish farming. Nutrient enrichment markedly induced a larger ratio of labile C pools in almost all sediment layers. The mean SOC stock in the seagrass bed in Xincun Bay was 6.80 ± 1.03 Mg C/ha, and it showed insignificant variation along the nutrient gradient.

Conclusions

Eutrophication may indirectly reduce the SOC sequestration capacity in the seagrass bed by enhancing labile organic carbon with a shorter resident time, and measures should be taken to reduce nutrient input into the seagrass bed to enhance its carbon sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ao K (2016) Increase of fish caging resulted in death of mass fish in Xinbun Bay, Lingshui. Sou Metro Dai. Hainan Daily Press, Hainan, http://www.hinews.cn/news/system/2016/04/05/030283948.shtml

  • Armitage A, Fourqurean JW (2016) Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences 13:313–321

    Article  CAS  Google Scholar 

  • Benbi DK, Kiranvir B, Sharma S (2015) Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 25:534–545

    Article  Google Scholar 

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72

    Article  Google Scholar 

  • Buyanovsky G, Aslam M, Wagner G (1994) Carbon turnover in soil physical fractions. Soil Sci Soc Am J 58:1167–1173

    Article  CAS  Google Scholar 

  • Carreiro M, Sinsabaugh R, Repert D, Parkhurst D (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chambers LG, Osborne TZ, Reddy KR (2013) Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry 115:363–383

    Article  CAS  Google Scholar 

  • Cheng X, Chen J, Luo Y, Henderson R, An S, Zhang Q, Chen J, Li B (2008) Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145:177–184

    Article  CAS  Google Scholar 

  • Chun CH, Wu ZJ, Zhang GX (2011) Ecological status and sustainable utilization of seagrass bed in Xincun Bay. Ocean Dev Manag 11:74–78 (in Chinese with English abstract)

    Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. P Natl Acad Sci USA 103:10316–10321

    Article  CAS  Google Scholar 

  • Dahl M, Deyanova D, Lyimo LD, Näslund J, Samuelsson G, Mtolera MS, Björk M, Gullström M (2016) Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. J Ecol 104:654–664

    Article  CAS  Google Scholar 

  • Dauwe B, Middelburg JJ, Herman PM (2001) Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Mar Ecol Prog Ser 215:13–22

    Article  CAS  Google Scholar 

  • Davies G, Ghabbour EA, Steelink C (2001) Humic acids: marvelous products of soil chemistry. J Chem Educ 78:1609

    Article  CAS  Google Scholar 

  • Dodla SK, Wang JJ, DeLaune RD (2012) Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: relationships to carbon functionalities. Sci Total Environ 435:151–158

    Article  PubMed  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco NF (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET (2010) Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem Cy 24

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013a) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968

    Article  CAS  Google Scholar 

  • Duarte CM, Sintes T, Marbà N (2013b) Assessing the CO2 capture potential of seagrass restoration projects. J Appl Ecol 50:1341–1349

    Article  CAS  Google Scholar 

  • Ellis L, Osborne T, Clark D, Gommermann L, Hicks C (2013) Seagrass mitigation site modeling and assessment. The University of Florida Soil and Water Science Department, Florida

    Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  CAS  PubMed  Google Scholar 

  • Ferrera CM, Watanabe A, Miyajima T, San Diego-McGlone ML, Morimoto N, Umezawa Y, Herrera E, Tsuchiya T, Yoshikai M, Nadaoka K (2016) Phosphorus as a driver of nitrogen limitation and sustained eutrophic conditions in Bolinao and Anda, Philippines, a mariculture-impacted tropical coastal area. Mar Pollut Bull 105:237–248

    Article  CAS  PubMed  Google Scholar 

  • Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by four species of seagrass. Estuar Coast Shelf Sci 35:565–576

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • General Administration of Quality Supervision IaQotPsRoC, Standardization Aministration of the People’s Republic of China (2008) GB17378.4-2007. The specification for marine monitoring, part 4: seawater analysis (in Chinese). the Standards Press of China, Beijing

    Google Scholar 

  • Ghani A, Dexter M, Perrott K (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243

    Article  CAS  Google Scholar 

  • Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8:e72469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan SY, Zhang D, Zhang Z (1986) Soil enzyme and its research methods. Agricultural, Beijing

    Google Scholar 

  • Hayes J (1993) Factors controlling 13 C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125

    Article  CAS  Google Scholar 

  • Haynes R (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  CAS  Google Scholar 

  • Hejnowicz AP, Kennedy H, Huxham MR, Rudd MA (2015) Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes. Front Mar Sci 2:32

    Article  Google Scholar 

  • Hicks CE (2007) Sediment organic carbon pools and sources in a recently constructed mangrove and seagrass ecosystem. University of Florida

  • Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E (2014) Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington

    Google Scholar 

  • Howard JL, Perez A, Lopes CC, Fourqurean JW (2016) Fertilization changes seagrass community structure but not blue carbon storage: results from a 30-Year field experiment. Estuar Coast 39:1–13

    Article  Google Scholar 

  • Hu Y, Wang S, Zeng D (2006) Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant Soil 282:379–386

    Article  CAS  Google Scholar 

  • Huang X, Huang L, Li Y, Xu Z, Fong C, Huang D, Han Q, Huang H, Tan Y, Liu S (2006) Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin Sci Bull 51:136–142

    Article  Google Scholar 

  • Jamaludin MR (2015) Carbon storage and preservation in seagrass meadows. Edith Cowan University

  • Jiang ZJ, Huang XP, Zhang JP (2012) Effect of environmental stress on non-structural carbohydrates reserves and transfer in seagrass. Acta Ecol Sin 32:6242–6250 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Jiang Z, Huang X, Zhang J (2013a) Dynamics of nonstructural carbohydrates in seagrass Thalassia hemprichii and its response to shading. Acta Oceanol Sin 32:61–67

    Article  CAS  Google Scholar 

  • Jiang Z, Huang X, Zhang J (2013b) Effect of nitrate enrichment and salinity reduction on the seagrass Thalassia hemprichii previously grown in low light. J Exp Mar Biol Ecol 443:114–122

    Article  CAS  Google Scholar 

  • Keil R, Mayer L (2014) Mineral matrices and organic matter. In: Holland H, Turekian K (eds) Treatlse on Geochemmistry. Elsevier, Oxford

    Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cy 24:6696–6705

    Article  Google Scholar 

  • Kenworthy JW, Thayer GW (1984) Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate and subtropical marine ecosystems. B Mar Sci 35:364–379

    Google Scholar 

  • Lavery PS, Mateo M-Á, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8:e73748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni V, Vela A, Pasqualini V, Pergent-Martini C, Pergent G (2008) Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: a review. Aquat Conserv 18:202–220

    Article  Google Scholar 

  • Li Q, Huang W, Zhou Y (2010) A preliminary study of eutrophication and occurrence of red tides in Xincun harbour. T Oceanol Limnol 4:9–15

    Google Scholar 

  • Li X, Hou L, Liu M, Lin X, Li Y, Li S (2015) Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands. Appl Microbiol Biot 99:2895–2909

    Article  CAS  Google Scholar 

  • Liu SL, Jiang ZJ, Zhang JP, Wu YC, Lian ZL, Huang XP (2016) Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Pollut Bull 110:274–280

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Jiang Z, Wu Y, Zhang J, Arbi I, Feng Y, Huang X, Macreadie PI (2017a) Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: implications of changes in seagrass blue carbon. Mar Pollut Bull 117:214–221

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Jiang Z, Zhang J, Wu Y, Huang X, Macreadie PI (2017b) Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows. Sci Total Environ 599–600:1479–1484

    Article  PubMed  Google Scholar 

  • Macreadie PI, Allen K, Kelaher BP, Ralph PJ, Skilbeck CG (2012) Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob Chang Biol 18:891–901

    Article  Google Scholar 

  • Macreadie PI, York PH, Sherman CD, Keough MJ, Ross DJ, Ricart AM, Smith TM (2014) No detectable impact of small-scale disturbances on ‘blue carbon’within seagrass beds. Mar Biol 161:2939–2944

    Article  CAS  Google Scholar 

  • Marbà N, Arias-Ortiz A, Masqué P, Kendrick GA, Mazarrasa I, Bastyan GR, Garcia-Orellana J, Duarte CM (2015) Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J Ecol 103:296–302

    Article  Google Scholar 

  • Matocha CJ, Haszler GR, Grove JH (2004) Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Sci 169:708–714

    Article  CAS  Google Scholar 

  • Mcglathery KJ (2008) Chapter 23—seagrass habitats. In: Nitrogen in the marine environment. Academic Press, New York

  • McGlathery KJ, Sundback K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18

    Article  CAS  Google Scholar 

  • Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, Nakaoka M (2015) Geographic variability in organic carbon stock and accumulation rate in sediments of east and southeast Asian seagrass meadows. Glob Biogeochem Cy 29:397–415

    Article  CAS  Google Scholar 

  • Pang X, Zhu B, Lü X, Cheng W (2015) Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths. Biogeochemistry 126:85–98

    Article  CAS  Google Scholar 

  • Phang VX, Chou L, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf Proc Lan 40:1387–1400

    Article  CAS  Google Scholar 

  • Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CM (2006) Human impacts on seagrasses: eutrophication, sedimentation, and contamination. Seagrasses: Biology, Ecology and Conservation. Springer, Netherlands

    Google Scholar 

  • Ralph P, Durako M, Enriquez S, Collier C, Doblin M (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193

    Article  Google Scholar 

  • Rollón RN (1998) Spatial variation and seasonality in growth and reproduction of Enhalus acoroides (LF) Royle populations in the coastal waters off Cape Bolinao, NW Philippines. UNESCO-IHE, Institute for Water Education

  • Rozaimi M, Lavery PS, Serrano O, Kyrwood D (2016) Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany, Western Australia). Estuar Coast Shelf S 171:58–65. https://doi.org/10.1016/j.ecss.2016.01.001

    Article  CAS  Google Scholar 

  • Saiya-Cork K, Sinsabaugh R, Zak D (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ (2016) Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol Oceanogr 61:938–952

    Article  Google Scholar 

  • Schmidt AL, Wysmyk JK, Craig SE, Lotze HK (2012) Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnol Oceanogr 57:1389–1402

    Article  CAS  Google Scholar 

  • Serrano O, Lavery PS, Rozaimi M, Mateo MÁ (2014) Influence of water depth on the carbon sequestration capacity of seagrasses. Glob Biogeochem Cy 28:950–961

    Article  CAS  Google Scholar 

  • Tanaka Y, Go GA, Watanabe A, Miyajima T, Nakaoka M, Uy WH, Nadaoka K, Watanabe S, Fortes MD (2014) 17-year change in species composition of mixed seagrass beds around Santiago Island, Bolinao, the northwestern Philippines. Mar Pollut Bull 88:81–85

    Article  CAS  PubMed  Google Scholar 

  • Trevathan-Tackett SM, Kelleway JJ, Macreadie PI, Beardall J, Ralph P, Bellgrove A (2015) Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96:3043–3057

    Article  PubMed  Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Wang H, He Z, Lu Z, Zhou J, Van Nostrand JD, Xu X, Zhang Z (2012) Genetic linkage of soil carbon pools and microbial functions in subtropical freshwater wetlands in response to experimental warming. Appl Environ Microb 78:7652–7661

    Article  CAS  Google Scholar 

  • Watanabe K, Kuwae T (2015) How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? Glob Chang Biol 21:2612–2623

    Article  PubMed Central  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. P Natl Acad Sci USA 106:12377–12381

    Article  CAS  Google Scholar 

  • Xiao Y, Huang Z, Lu X (2015) Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang plain, Northeast China. Ecol Eng 82:381–389

    Article  Google Scholar 

  • Yin R, Deng H, Wang H-l, Zhang B (2014) Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena 115:96–103. https://doi.org/10.1016/j.catena.2013.11.015

    Article  Google Scholar 

  • Zhang XL, Shi SL, Pan GX, Li LQ, Zhang XH, Li Z (2008) Changes in eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou, Fujian, China. Adv Earth Sci 23:974–981 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang J, Huang X, Jiang Z (2014) Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading. Mar Pollut Bull 83:508–515

    Article  CAS  PubMed  Google Scholar 

  • Zhou CY, Jiang ZJ, Lian ZL, Zhang JP, Ni ZX, Xu BY, Huang XP (2014) Characteristics of seagrass Thalassia hemprichii leaf litter and its response to the fish farming in the Xincun Bay, Hainan Island. Chin J Ecol 133:1546–1552 (in Chinese with English abstract)

    Google Scholar 

  • Zibilske L, Bradford J, Smart J (2002) Conservation tillage induced changes in organic carbon, total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil. Soil Till Res 66:153–163

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Basic Research Program of China (2015CB452905, 2015CB452902), the National Natural Science Foundation of China (nos. 41730529, 41306108, 41406128), the Natural Science Fund of Guangdong (nos. 2014A030313734, 2014A030313716), the National Specialized Project of Science and Technology (2015FY110600), and the National Key Research and Development Program of China (2017YFC0506104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Huang.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

ESM 1

(DOCX 5.11 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Liu, S., Zhang, J. et al. Eutrophication indirectly reduced carbon sequestration in a tropical seagrass bed. Plant Soil 426, 135–152 (2018). https://doi.org/10.1007/s11104-018-3604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3604-y

Keywords

Navigation