Skip to main content
Log in

Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems

  • DOM as a system regulator
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The emergent wetland and littoral components of the land-water zone are functionally coupled by the amounts and types of dissolved organic matter that are released, processed, transported to, and then further processed within the recipient waters. Operational couplings and integrations in freshwater ecosystems occur along physical and metabolic gradients of a number of scales from micrometer to kilometer dimensions. The operation and turnover of the microbial communities, largely associated with surfaces, generate the metabolic foundations for material fluxes along larger-scale gradients.

Because of the predominance of small, shallow freshwater bodies, most dissolved organic carbon (DOC) of lacustrine and riverine ecosystems is derived from photosynthesis of higher plants and microflora associated with detritus, including sediments, and is only augmented by photosynthesis of phytoplankton. As the dissolved organic compounds generated in the wetland and littoral interface regions move toward the open-water regions of the ecosystems, partial utilization effects a selective increase in organic recalcitrance. Even though DOC from allochthonous and from interface sources is more recalcitrant than that produced by planktonic microflora, decomposition of the much larger interface quantities imported to the pelagic zone dominates ecosystem decomposition. The observed high sustained productivity of the land-water interface zone results from extensive recycling of essential resources (nutrients, inorganic carbon) and conservation mechanisms. On the average in lakes and streams, greater than 90 percent of the decomposition in the ecosystem is by bacteria utilizing DOM from non-pelagic sources of primary productivity. In addition to direct mineralization of DOC from non-pelagic sources, many of the organic compounds function indirectly to influence metabolism. New evidence is presented to demonstrate formation of complexes between humic and fulvic organic acids and extracellular enzymes. These complexes inhibit enzyme activity and can be transported within the ecosystem. The complex can be decoupled by mild ultraviolet photolysis with regeneration of enzyme activity in displaced locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy, 1985. Humic Substances in Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization. J. Wiley & Sons, New York, 692 pp.

    Google Scholar 

  • Blum, U. & S. R. Shafer, 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20: 793–800.

    Article  CAS  Google Scholar 

  • Blytt, H. J., T. K. Guscar & L. G. Butler, 1988. Antinutritional effects and ecological significance of dietary condensed tannins may not be due to binding and inhibiting digestive enzymes. J. Chem. Ecol. 14: 1455–1465.

    Article  CAS  Google Scholar 

  • Borsheim, K. Y., S. Andersen, G. H. Johnsen, E. O. Kambestad & S. Norland, 1988. Primary and bacterial production compared to growth and food requirements of Daphnia longispina in Lake Kvernavatnet, west Norway. J. Plankton Res. 10: 921–939.

    Google Scholar 

  • Carrick, H. J., G. L. Fahnenstiel, E. F. Stoermer & R. G. Wetzel, 1991. Protozoan growth rates and trophic couplings in Lake Michigan. Limnol. Oceanogr. (In press).

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Progr. Ser. 43: 1–10.

    Google Scholar 

  • Conn, E. E. (Ed.), 1981. The Biochemistry of Plants. Vol. 7. Secondary Plant Products. Academic Press, New York, 798 pp.

  • Cotner, J. B., Jr. & R. G. Wetzel, 1991a. Characterization of bacterial phosphatases from different habitats in a small, hardwater lake. In: R. J. Chrost, Editor. Exoenzymes in the Aquatic Environment. Developments in Hydrobiology (In press).

  • Cotner, J. B., Jr. & R. G. Wetzel, 1991b. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol. Oceanogr. (Submitted).

  • Coveney, M. F. & R. G. Wetzel, 1988. Experimental evaluation of conversion factors for the [3H]thymidine incorporation assay of bacterial secondary productivity. Appl. environ. Microbiol. 54: 2018–2026.

    PubMed  CAS  Google Scholar 

  • Coveney, M. F. & R. G. Wetzel, 1989. Bacterial metabolism of algal extracellular carbon. Hydrobiologia 173: 141–149.

    Article  CAS  Google Scholar 

  • Coveney, M. F. & R. G. Wetzel, 1991. Nutrient effects on specific growth rate of bacterioplankton in oligotrophic lakewater cultures. Appl. environ. Microbiol. (In press).

  • Craft, C. B., S. W. Broome, E. D. Seneca & W. J. Showers, 1988. Estimating sources of soil organic matter in natural and transplanted estuarine marshes using stable isotopes of carbon and nitrogen. Estuar. coast. Shelf Sci. 26: 633–641.

    Article  CAS  Google Scholar 

  • Cunningham, H. W. & R. G. Wetzel, 1989. Kinetic analysis of protein degradation by a freshwater wetland sediment community. Appl. environ. Microbiol. 55: 1963–1967.

    PubMed  CAS  Google Scholar 

  • Dalton, B. R., U. Blum & S. B. Weed, 1989. Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soils. Soil Sci. Soc. Am. J. 53: 747–762.

    Article  Google Scholar 

  • Degens, E. T. & V. Ittekkot, 1983. Dissolved organic matter in Lake Tanganyika and Lake Baikal — a brief survey. Mitt. Geol.-Paläont. Inst. Univ. Hamburg 55: 129–143.

    Google Scholar 

  • De Haan, H., 1977. Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (the Netherlands). Limnol. Oceanogr. 22: 38–44.

    Google Scholar 

  • Faust, B. C. & J. Holgné, 1987. Sensitized photooxidation of phenols by fulvic acid in natural waters. Envir. Sci. Technol. 21: 957–964.

    Article  CAS  Google Scholar 

  • Francko, D. A. & R. G. Wetzel, 1982. The isolation of cyclic adenosine 3′:5′-monophosphate (cAMP) from lakes of differing trophic status: Correlation with planktonic metabolic variables. Limnol. Oceanogr. 27: 27–38.

    CAS  Google Scholar 

  • Geller, A., 1986. Comparison of mechanisms enhancing biodegradability of refractory lake water constituents. Limnol. Oceanogr. 31: 755–764.

    CAS  Google Scholar 

  • Gjessing, E. T. & T. C. Gjerdahl, 1970. Influence of ultraviolet radiation on aquatic humus. Vatten 26: 144–145.

    CAS  Google Scholar 

  • Godshalk, G. L. & R. G. Wetzel, 1984. Accumulation of sediment organic matter in a hardwater lake with special reference to lake ontogeny. Bull. mar. Sci. 35: 576–586.

    Google Scholar 

  • Guittonneau, S., J. de Laat, M. Dore, J. P. Duguet & C. Bonnel, 1988. Etudes comparative de la degradation de quelques molecules aromatiques simples en solution aqueuse par photolyse UV et par photolyse du peroxyde d'hydrogene. Envir. Technol. Lett. 9: 1115–1128.

    Article  CAS  Google Scholar 

  • Håkanson, L., 1983. Principles of Lake Sedimentology. Springer-Verlag, New York, 316 pp.

  • Haslam, E., 1989. Plant Polyphenols. Vegetable Tannins Revisited. Cambridge Univ. Press, Cambridge, 230 pp.

  • Hering, J. G. & M. M. Morel, 1988. Humic acid complexation of calcium and copper. Envir. Sci. Technol. 22: 1234–1237.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., Editor, 1980. Limnology of Tundra Ponds. Dowden, Hutchinson & Ross, Inc., Stroudsburg, 514 pp.

  • Jones, R. L., 1990. Phosphorus transformation in the epilimnion of humic lakes: Biological uptake of phosphate. Freshwat. Biol. 23: 323–337.

    Article  CAS  Google Scholar 

  • Jones, R. L., K. Salonen & H. de Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: Abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.

    Article  CAS  Google Scholar 

  • Kairesalo, T. & T. Matilainen, 1988. The importance of low flow rates to the phosphorus flux between littoral and pelagial zones. Verb. int. Ver. Limnol. 23: 2210–2215.

    CAS  Google Scholar 

  • Kairesalo, T. & P. Saukkonen, 1990. Thymidine incorporation by littoral and pelagial bacterioplankton in a mesohumic lake. Verb. int. Ver. Limnol. 24: 677–681.

    Google Scholar 

  • Kurata, A., C. Saraceni & H. Kadota, 1979. The status of B group vitamins in macrophyte and pelagic zones of Lake Biwa. Mem. Ist. ital. Idrobiol. 37: 63–85.

    CAS  Google Scholar 

  • Lähdesmäki, P. & R. Piispanen, 1988. Degradation products and the hydrolytic enzyme activities in the soil humification processes. Soil Biol. Biochem. 20: 287–292.

    Article  Google Scholar 

  • Larson, R. A., 1978. Dissolved organic matter of a lowcolored stream. Freshwat. Biol. 8: 91–104.

    Article  CAS  Google Scholar 

  • van Loosdrecht, M. C. M., J. Lyklema, W. Norde & A. J. B. Zehnder, 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54: 75–87.

    PubMed  Google Scholar 

  • Lundqvist, G., 1927. Bodenablagerungen und Entwicklungstypen der Seen. In: A. Thienemann (Ed.), E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. Die Binnengewässer 2: 1–122.

  • Manny, B. A., M. C. Miller & R. G. Wetzel, 1971. Ultraviolet combustion of dissolved organic nitrogen compounds in lake waters. Limnol. Oceanogr. 16: 71–85.

    CAS  Google Scholar 

  • McLaren, A. D. & D. Shugar, 1964. Photochemistry of Proteins and Nucleic Acids. Pergamon Press, Oxford, 449 pp.

  • Mickle, A. M. & R. G. Wetzel, 1978a. Effectiveness of submersed angiosperm epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. I. Inorganic nutrients. Aquat. Bot. 4: 303–316.

    Article  CAS  Google Scholar 

  • Mickle, A. M. & R. G. Wetzel, 1978b. Effectiveness of submersed angiosperm epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. II. Dissolved organic carbon. Aquat. Bot. 4: 317–329.

    Article  CAS  Google Scholar 

  • Mickle, A. M. & R. G. Wetzel, 1979. Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. III. Refractory organic carbon. Aquat. Bot. 6: 339–355.

    Article  CAS  Google Scholar 

  • Moeller, R. E. & R. G. Wetzel, 1988. Littoral vs profundal components of sediment accumulation: Contrasting roles as phosphorus sinks. Verb. int. Ver. Limnol. 23: 386–393.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphates with carbonates in a marl lake. Limnol. Oceanogr. 17: 763–767.

    Article  CAS  Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1973. Interaction of yellow organic acids with calcium carbonate in fresh water. Limnol. Oceanogr. 18: 490–493.

    CAS  Google Scholar 

  • Perdue, E. M. & E. T. Gjessing (eds.), 1990. Organic Acids in Aquatic Ecosystems. John Wiley & Sons, Chichester, 345 pp.

  • Saunders G. W. 1972. The transformation of artificial detritus in lake water. Mem. Ist. ital. Idrobiol. Suppl. 29: 261–288.

    Google Scholar 

  • Sherr, B. & E. Sherr, 1989. Trophic impacts phagotrophic Protozoa in pelagic foodwebs. In T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida (eds.), Recent Advances in Microbial Ecology. Jap. Sci. Soc. Press, Tokyo: 388–393.

  • Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verb. int. Ver. Limnol. 20: 1248–1254.

    Google Scholar 

  • Steinberg, C. & W. Kühnel, 1987. Influence of cation acids on dissolved humic substances under acidified conditions. Wat. Res. 21: 95–98.

    Article  CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1981. Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.

    CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1982a. Phytoplankton contribution to alkaline phosphatase activity. Arch. Hydrobiol. 93: 265–271.

    CAS  Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1982b. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380.

    Article  CAS  Google Scholar 

  • Suffet, I. H. & P. MacCarthy (eds.), 1989. Aquatic Humic Substances. Influence on Fate and Treatment of Pollutants. American Chemical Soc., Washington, DC, 864 pp.

  • Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Martinus Nijhoff/Dr W. Junk Publ., Dordrecht, 497 pp.

  • Tolstoy, A., 1988. Predicted and measured annual primary production of phytoplankton — examples from some Swedish lakes. Arch. Hydrobiol. 113: 381–404.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and clearwater lake. J. Plankton Res. 11: 985–1000.

    Google Scholar 

  • Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Wetzel, R. G., 1968. Dissolved organic matter and phytoplankton productivity in marl lakes. In Symposium on biogenic Metabolism in Fresh Waters, Chemistry and Microbiology. Mitteilungen int. Ver. Limnol. 14: 261–273.

  • Wetzel, R. G., 1975. Limnology. W.B. Saunders Co., Philadelphia, 743 pp.

  • Wetzel, R. G., 1979. The role of the littoral zone and detritus in lake metabolism. In G. E. Likens, W. Rodhe, and C. Serruya, (eds.), Symposium on Lake Metabolism and Lake Management. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 145–161.

  • Wetzel, R. G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verb. int. Ver. Limnol. 21: 337–349.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd Edition. Saunders College Publ., Philadelphia, 860 pp.

  • Wetzel, R. G., 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. Mar. Sci. 35: 503–509.

    Google Scholar 

  • Wetzel, R. G., 1990a. Land-water interfaces: Metabolic and limnological regulators. Edgardo Baldi Memorial Lecture. Verh. int. Ver. Limnol. 24: 6–24.

    Google Scholar 

  • Wetzel, R. G., 1990b. Reservoir ecosystems: Conclusions and Speculations. In K. Thornton, B. L. Kimmel and F. E. Payne (eds.), Reservoir Limnology. Academic Press, New York: 227–238.

    Google Scholar 

  • Wetzel, R. G., 1991. Extracellular enzymatic interactions in aquatic ecosystems: Storage, redistribution, and interspecific communication. In R. J. Chrost (ed.), Extracellular Enzymes in Aquatic Ecosystems. Springer-Verlag, New York: 6–28.

    Google Scholar 

  • Wetzel, R. G. & R. A. Hough, 1973. Productivity and role of aquatic macrophytes in lakes. An assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    CAS  Google Scholar 

  • Wetzel, R. G., P. H. Rich, M. C. Miller & H. L. Allen, 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem. Ist. ital. Idrobiol. Suppl. 29: 185–243.

    Google Scholar 

  • Zepp, R. G., G. L. Baughmann & P. F. Schlotzhauer, 1981. Comparison of photochemical behavior of various humic substances in water. I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 10: 109–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetzel, R.G. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229, 181–198 (1992). https://doi.org/10.1007/BF00007000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007000

Keywords

Navigation