Skip to main content
Log in

Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 μM (8.6 mg L−1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriaens P, Chang P, Barkovskii A (1996) Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32:433–441

    Article  CAS  Google Scholar 

  • Augustijn-Beckers P, Hornsby A, Wauchope R (1994) The SCS/ARS/CES pesticide properties database for environmental decision-making. II. Additional compounds, reviews of environmental contamination and toxicology. Springer, New York, pp 1–82

    Google Scholar 

  • Bae HS, Rash BA, Rainey FA, Nobre MF, Tiago I, Costa MS, Moe WM (2007) Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int J Syst Evol Microbiol 57:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Bouchard B, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Evol Microbiol 46:1010–1015

    CAS  Google Scholar 

  • Brahushi F, Dörfler U, Schroll R, Munch JC (2004) Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity. Chemosphere 55:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang BV, Zheng JX, Yuan SY (1996) Effects of alternative electron donors, acceptors and inhibitors on pentachlorophenol dechlorination in soil. Chemosphere 33:313–320

    Article  CAS  Google Scholar 

  • Chen M, Shih K, Hu M, Li F, Liu C, Wu W, Tong H (2012) Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. J Agric Food Chem 60:2967–2975

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tao L, Li F, Lan Q (2014) Reductions of Fe(III) and pentachlorophenol linked with geochemical properties of soils from Pearl River Delta. Geoderma 217–218:201–211

    Article  Google Scholar 

  • Chen Y, Tao L, Wu K, Wang Y (2016) Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China. Environ Sci Pollut Res 23:23184–23194

    Article  CAS  Google Scholar 

  • Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A (2005) Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol 71:2145–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448

    Article  Google Scholar 

  • Coby AJ, Picardal F, Shelobolina E, Xu H, Roden EE (2011) Repeated anaerobic microbial redox cycling of iron. Appl Environ Microbiol 77:6036–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutter LA, Watts JE, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3:699–709

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241

    Article  CAS  Google Scholar 

  • Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7:287–294

    Article  CAS  PubMed  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan X, Liu F, Xie Y, Zhu L, Han B (2013) Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater. Environ Geochem Health 35:535–549

    Article  CAS  PubMed  Google Scholar 

  • He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36:3945–3952

    Article  CAS  PubMed  Google Scholar 

  • Heimann AC, Batstone DJ, Jakobsen R (2006) Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl Environ Microbiol 72:2942–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliger CH, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Muller A, Igarashi Y, Conrad R, Friendrich MW (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4:267–278

    Article  CAS  PubMed  Google Scholar 

  • Keith L, Telliard W (1979) ES&T special report: priority pollutants: Ia perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  • Kennes C, Wu WM, Bhatnagar L, Zeikus J (1996) Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Appl Microbiol Biotechnol 44:801–806

    Article  CAS  PubMed  Google Scholar 

  • Khodadoust AP, Suidan MT, Acheson CM, Brenner RC (1999) Solvent extraction of pentachlorophenol from contaminated soils using water-ethanol mixtures. Chemosphere 38:2681–2693

    Article  CAS  Google Scholar 

  • Kittelmann S, Friedrich MW (2008) Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol 10:31–46

    Article  CAS  PubMed  Google Scholar 

  • Kotik M, Davidová A, Voříšková J, Baldrian P (2013) Bacterial communities in tetrachloroethene-polluted groundwaters: a case study. Sci Total Environ 454:517–527

    Article  PubMed  Google Scholar 

  • Kranzioch-Seipel I, Beckert U, Shen C, Yin D, Tiehm A (2016) Microbial dechlorination of HCB, PCP, PCB180, HCH and PCE in a Yangtze Three Gorges Reservoir enrichment culture, China. Environ Earth Sci 75(10):1–9

    Article  CAS  Google Scholar 

  • Kuwatsuka S, Igarashi M (1975) Degradation of PCP in soils: II. The relationship between the degradation of PCP and the properties of soils, and the identification of the degradation products of PCP. Soil Sci Plant Nutr 21:405–414

    Article  CAS  Google Scholar 

  • Lendvay J, Löffler FE, Dollhopf M, Aiello M, Daniels G, Fathepure B, Gebhard M, Heine R, Helton R, Shi J (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431

    Article  CAS  Google Scholar 

  • Li P, Wang X, Stagnitti F, Li L, Gong Z, Zhang H, Xiong X, Austin C (2005) Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. Environ Eng Sci 22:390–399

    Article  CAS  Google Scholar 

  • Li H, Peng J, Weber KA, Zhu Y (2011) Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. J Soils Sediment 11:1234–1242

    Article  CAS  Google Scholar 

  • Li Z, Inoue Y, Suzuki D, Ye L, Katayama A (2013) Long-term anaerobic mineralization of pentachlorophenol in a continuous-flow system using only lactate as an external nutrient. Environ Sci Technol 47:1534–1541

    CAS  PubMed  Google Scholar 

  • Li X, Zhang W, Liu T, Chen L, Chen P, Li F (2016) Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biol Biochem 94:70–79

    Article  CAS  Google Scholar 

  • Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91:fiv004

    Article  PubMed  Google Scholar 

  • Männistö MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197

    Article  PubMed  Google Scholar 

  • McCormick ML, Adriaens P (2004) Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Yamazoe A, Ito M, Ohji S, Hosoyama A, Takahata Y, Fujita N (2015) The impact of injections of different nutrients on the bacterial community and its dechlorination activity in chloroethene-contaminated groundwater. Microbes Environ 30:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Montenegro MA, Araujo JC, Vazoller RF (2003) Microbial community evaluation of anaerobic granular sludge from a hybrid reactor treating pentachlorophenol by using fluorescence in situ hybridization. Water Sci Technol 48:65–73

    CAS  PubMed  Google Scholar 

  • Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18:273–278

    Article  CAS  PubMed  Google Scholar 

  • Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, pp 289–367

    Google Scholar 

  • Payne RB, May HD, Sowers KR (2011) Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45:8772–8779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714

    Article  PubMed  Google Scholar 

  • Ruckdeschel G, Renner G, Schwarz K (1987) Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria. Appl Environ Microbiol 53:2689–2692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Chung BS, Lee SS, Park W, Lee SS, Jeon CO (2009) Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge. Int J Syst Evol Microbiol 59:526–530

    Article  CAS  PubMed  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil Taxonomy. In: 12th USDA, p 179

  • Sponza DT, Cigal C (2008) Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP). J Environ Manag 87:177–192

    Article  CAS  Google Scholar 

  • Stuart S, Woods S, Lemmon T, Ingle J (1999) The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed, methanogenic culture. Biotechnol Bioeng 63:69–78

    Article  CAS  PubMed  Google Scholar 

  • Tartakovsky B, Manuel MF, Beaumier D, Greer C, Guiot S (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnol Bioeng 73:476–483

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Hu M, Li F, Liu C, Chen M (2014) Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biol Biochem 70:142–150

    Article  CAS  Google Scholar 

  • Tong H, Liu C, Li F, Luo C, Chen M, Hu M (2015) The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. J Hazard Mater 298:252–260

    Article  CAS  PubMed  Google Scholar 

  • Utkin I, Dalton DD, Wiegel J (1995) Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61:346–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Lee CM, Lu CJ, Chuang MS, Huang CZ (2000) Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41:1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, He Y, Zhang Q, Xu J, Crowley D (2015) Coupling between pentachlorophenol dechlorination and soil redox as revealed by stable carbon isotope, microbial community structure, and biogeochemical data. Environ Sci Technol 49:5425–5433

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Yoshida Y, Handa Y, Kim HK, Ichihara S, Katayama A (2007) Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Sci Total Environ 381:233–242

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Katayama A (2012) Humin as an electron mediator for microbial reductive dehalogenation. Environ Sci Technol 46:6575–6583

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zivel M, Rittmann BE, Krajmalnik-Brown R (2010) Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ Sci Technol 44:5159–5164

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang D, Li Z, Akatsuka T, Yang S, Suzuki D, Katayama A (2014) Insoluble Fe-humic acid complex as a solid-phase electron mediator for microbial reductive dechlorination. Environ Sci Technol 48:6318–6325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China (41603127, 41420104007, and 41673135), the Guangdong Natural Science Foundation of China (2016A030313780, 2016B020242006 and S2013050014266), Special Fund for Agro-Scientific Research in the Public Interest of China (201503107-4), the Scientific Platform and Innovation Capability Construction Program of GDAS (2016GDASPT-0212), and One Hundred Talents Programme of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshuai Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H., Chen, M., Li, F. et al. Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Biodegradation 28, 219–230 (2017). https://doi.org/10.1007/s10532-017-9791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-017-9791-z

Keywords

Navigation