Skip to main content
Log in

Microbial degradation of chlorinated phenols

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Chlorophenols have been introduced into the environment through their use as biocides and as by-products of chlorine bleaching in the pulp and paper industry. Chlorophenols are subject to both anaerobic and aerobic metabolism. Under anaerobic conditions, chlorinated phenols can undergo reductive dechlorination when suitable electron-donating substrates are available. Halorespiring bacteria are known which can use both low and highly chlorinated congeners of chlorophenol as electron acceptors to support growth. Many strains of halorespiring bacteria have the capacity to eliminate ortho-chlorines; however only bacteria from the species Desulfitobacterium hafniense (formerly frappieri) can eliminate para- and meta-chlorines in addition to ortho-chlorines. Once dechlorinated, the phenolic carbon skeletons are completely converted to methane and carbon dioxide by other anaerobic microorganisms in the environment. Under aerobic conditions, both lower and higher chlorinated phenols can serve as sole electron and carbon sources supporting growth. The best studied strains utilizing pentachlorophenol belong to the genera Mycobacterium and Sphingomonas. Two main strategies are used by aerobic bacteria for the degradation of chlorophenols. Lower chlorinated phenols for the most part are initially attacked by monooxygenases yielding chlorocatechols as the first intermediates. On the other hand, polychlorinated phenols are converted to chlorohydroquinones as the initial intermediates. Fungi and some bacteria are additionally known that cometabolize chlorinated phenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamsson K, Klick S (1991) Degradation of halogenated phenols in anoxic natural marine-sediments. Mar Poll Bull 22:227–233

    CAS  Google Scholar 

  • Aiken BS, Logan BE (1996) Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation 7:175–182

    CAS  Google Scholar 

  • Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white-rot fungi in rotating tube bioreactors. Water Res 29:61–67

    CAS  Google Scholar 

  • Annachhatre AP, Gheewala SH (1996) Biodegradation of chlorinated phenolic compounds. Biotechnol Adv 14:35–56

    CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl Microbiol Biotechnol 25:62–67

    CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1987a) Complete dechlorination of tetrachlorohydroquinone by cell-extracts of pentachlorophenol-induced Rhodococcus-chlorophenolicus. J Bacteriol 169:5125–5130

    CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1987b) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol 169:675–681

    CAS  Google Scholar 

  • Apajalahti JHA, Karpanoja P, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus new-species a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

    CAS  Google Scholar 

  • Armenante PM, Kafkewitz D, Lewandowski GA, Jou CJ (1999) Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Res 33:681–692

    CAS  Google Scholar 

  • Atuanya EI, Purohit HJ, Chakrabarti T (2000) Anaerobic and aerobic biodegradation of chlorophenols using UASB and ASG bioreactors. World J Microbiol Biotechnol 16:95–98

    CAS  Google Scholar 

  • Bae HS, Lee JM, Kim YB, Lee ST (1997a) Biodegradation of the mixtures of 4-chlorophenol and phenol byComamonas testosteroni CPW301. Biodegradation 7:463–469

    CAS  Google Scholar 

  • Bae HS, Rhee SK, Cho YG, Hong JK, Lee ST (1997b) Two different pathways (a chlorocatechol and a hydroquinone pathway) for the 4-chlorophenol degradation in two isolated bacterial strains. J Microbiol Biotechnol 7:237–241

    CAS  Google Scholar 

  • Bae HS, Yamagishi T, Suwa Y (2002) Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. Microbiology 148:221–227

    CAS  Google Scholar 

  • Baker MD, Mayfield CI (1980) Microbial and nonbiological decomposition of chloro phenols and phenol in soil. Water Air Soil Poll 13:411–424

    CAS  Google Scholar 

  • Banerji SK, Bajpai RK (1994) Cometabolism of pentachlorophenol by microbial species. J Hazard Mater 39:19–31

    CAS  Google Scholar 

  • Basu SK, Oleszkiewicz JA, Sparling R (2005) Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol. Environ Technol 26:1383–1391

    CAS  Google Scholar 

  • Beaudet R, Levesque MJ, Villemur R, Lanthier M, Chenier M, Lepine F, Bisaillon JG (1998) Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1. Appl Microbiol Biotechnol 50:135–141

    CAS  Google Scholar 

  • Becker JG, Stahl DA, Rittmann BE (1999) Reductive dehalogenation and conversion of 2-chlorophenol to 3-chlorobenzoate in a methanogenic sediment community: Implications for predicting the environmental fate of chlorinated pollutants. Appl Environ Microbiol 65:5169–5172

    CAS  Google Scholar 

  • Beltrame P, Beltrame PL, Carniti P, Pitea D (1982) Kinetics of biodegradation of mixtures containing 2,4-di chloro phenol in a continuous stirred reactor. Water Res 16:429–434

    CAS  Google Scholar 

  • Benoit-Guyod JL, Seiglemurandi F, Steiman R, Sage L, Toe A (1994) Biodegradation of pentachlorophenol by micromycetes. 3. Deuteromycetes. Environ Toxicol Water Qual 9:33–44

    CAS  Google Scholar 

  • Bestetti G, Galli E, Leoni B, Pelizzoni F, Sello G (1992) Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida. Appl Microbiol Biotechnol 37:260–263

    CAS  Google Scholar 

  • Bisaillon JG, Lepine F, Beaudet R, Sylvestre M (1993) Potential for carboxylation-dehydroxylation of phenolic-compounds by a methanogenic consortium. Can J Microbiol 39:642–648

    CAS  Google Scholar 

  • Bohuslavek J, Chanama S, Crawford RL, Xun LY (2005) Identification and characterization of hydroxyquinone hydratase activities from Sphingobium chlorophenolicum ATCC 39723. Biodegradation 16:353–362

    CAS  Google Scholar 

  • Bollag JM, Briggs CG, Dawson JE, Alexander M (1968a) 2,4-D Metabolism – enzymatic degradation of chlorocatechols. J Agric Food Chem 16:829–833

    CAS  Google Scholar 

  • Bollag JM, Helling CS, Alexander M (1968b) 2,4-D metabolism – enzymatic hydroxylation of chlorinated phenols. J Agric Food Chem 16:826–828

    Google Scholar 

  • Boothe DDH, Rogers JE, Wiegel J (1997) Reductive dechlorination of chlorophenols in slurries of low organic carbon marine sediments and subsurface soils. Appl Microbiol Biotechnol 47:742–748

    CAS  Google Scholar 

  • Bouchard B, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Sys Bacteriol 46:1010–1015

    CAS  Google Scholar 

  • Boyd SA, Shelton DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol 47:272–277

    CAS  Google Scholar 

  • Boyer A, Page-Belanger R, Saucier M, Villemur R, Lepine F, Juteau P, Beaudet R (2003) Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochem J 373:297–303

    CAS  Google Scholar 

  • Breitenstein A, Saano A, Salkinoja-Salonen M, Andreesen JR, Lechner U (2001) Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch Microbiol 175:133–142

    CAS  Google Scholar 

  • Bryant FO, Hale DD, Rogers JE (1991) Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in fresh-water, anaerobic sediment slurries. Appl Environ Microbiol 57:2293–2301

    CAS  Google Scholar 

  • Chang BV, Yeh LN, Yuan SY (1996) Effect of a dichlorophenol-adapted consortium on the dechlorination of 2,4,6-trichlorophenol and pentachlorophenol in soil. Chemosphere 33:303–311

    CAS  Google Scholar 

  • Chen ST, Hsu CY, Berthouex PM (2006) Fate and modeling of pentachlorophenol degradation in a laboratory-scale anaerobic sludge digester. J Environ Eng-ASCE 132:795–802

    CAS  Google Scholar 

  • Christiansen N, Ahring BK (1996a) Desulfitobacterium hafniense sp nov, an anaerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448

    Google Scholar 

  • Christiansen N, Ahring BK (1996b) Introduction of a de novo bioremediation activity into anaerobic granular sludge using the dechlorinating bacterium DCB-2. Anton Leeuwen Int J Gen Mol Microbiol 69:61–66

    CAS  Google Scholar 

  • Christiansen N, Ahring BK, Wohlfarth G, Diekert G (1998) Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett 436:159–162

    CAS  Google Scholar 

  • Chu JP, Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol 23:1033–1035

    CAS  Google Scholar 

  • Chudoba J, Albokova J, Lentge B, Kummel R (1989) Biodegradation of 2,4-dichlorophenol by activated sludge microorganisms. Water Res 23:1439–1442

    CAS  Google Scholar 

  • Chung N, Kang GY, Kim GH, Lee IS, Bang WG (2001) Effect of nutrient nitrogen on the degradation of pentachlorophenol by white rot fungus, Phanerochaete chrysosporium. J Microbiol Biotechnol 11:704–708

    CAS  Google Scholar 

  • Cobos-Vasconcelos DDL, Santoyo-Tepole F, Juarez-Ramirez C, Ruiz-Ordaz N, Galindez-Mayer CJJ (2006) Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme Microb Technol 40:57–60

    Google Scholar 

  • Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JRW, Kersters K, Vandamme P (1999) Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413

    Google Scholar 

  • Cole JR, Cascarelli AL, Mohn WW, Tiedje JM (1994) Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl Environ Microbiol 60:3536–3542

    CAS  Google Scholar 

  • Collins G, Foy C, McHugh S, O’Flaherty V (2005) Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15°C. FEMS Microbiol Ecol 53:167–178

    CAS  Google Scholar 

  • Coulter C, Kennedy JT, McRoberts WC, Harper DB (1993) Purification and properties of an s-adenosylmethionine 2,4-disubstituted phenol o-methyltransferase from Phanerochaete chrysosporium. Appl Environ Microbiol 59:706–711

    CAS  Google Scholar 

  • D’Angelo EM, Reddy KR (2000) Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Sci Soc Am J 64:933–943

    Article  CAS  Google Scholar 

  • Dec J, Bollag JM (1994) Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Tech 28:484–490

    CAS  Google Scholar 

  • Deschler C, Duran R, Junqua M, Landou G, Salvado JC, Goulas P (1998) Involvement of 3,4-dichlorophenol hydroxylase in degradation of 3,4-dichlorophenol by the white rot fungus Phanerochaete chrysosporium. J Mol Catal B Enzyme 5:423–428

    CAS  Google Scholar 

  • Dietrich G, Winter J (1990) Anaerobic degradation of chlorophenol by an enrichment culture. Appl Microbiol Biotechnol 34:253–258

    CAS  Google Scholar 

  • Droste RL, Kennedy KJ, Lu JG, Lentz M (1998) Removal of chlorinated phenols in upflow anaerobic sludge blanket reactors. Water Sci Technol 38:359–367

    CAS  Google Scholar 

  • Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49

    CAS  Google Scholar 

  • Edgehill RU, Finn RK (1982) Isolation, characterization and growth-kinetics of bacteria metabolizing pentachlorophenol. Eur J Appl Microbiol Biotechnol 16:179–184

    CAS  Google Scholar 

  • Edgehill RU, Finn RK (1983a) Activated sludge treatment of synthetic waste water containing pentachlorophenol. Biotechnol Bioeng 25:2165–2176

    CAS  Google Scholar 

  • Edgehill RU, Finn RK (1983b) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45:1122–1125

    CAS  Google Scholar 

  • Ennik-Maarsen K (1999) Degradation of chlorophenols and chlorobenzoates by methanogenic consortia. PhD thesis, Wageningen University

  • Fahr K, Wetzstein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

    CAS  Google Scholar 

  • Farhana L, New PB (1997) The 2,4-dichlorophenol hydroxylase of Alcaligenes eutrophus JMP134 is a homotetramer. Can J Microbiol 43:202–205

    CAS  Google Scholar 

  • Fava F, Armenante PM, Kafkewitz D (1995) Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lett Appl Microbiol 21:307–312

    CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    CAS  Google Scholar 

  • Field JA (2003) Biodegradation of chlorinated compounds by white rot fungi. In: Haggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer Academic Publishers, Boston, pp 159–204

    Google Scholar 

  • Finkel’shtein ZI, Baskunov BP, Golovlev EL, Moiseeva OV, Vervoort J, Rietjens I, Golovleva LA (2000) Dependence of the conversion of chlorophenols by rhodococci on the number and position of chlorine atoms in the aromatic ring. Microbiology 69:40–47

    CAS  Google Scholar 

  • Gauthier A, Beaudet R, Lepine F, Juteau P, Villemur R (2006) Occurrence and expression of crdA and cprA5 encoding chloroaromatic reductive dehalogenases in Desulfitobacterium strains. Can J Microbiol 52:47–55

    CAS  Google Scholar 

  • Genthner BRS, Price WA, Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55:1472–1476

    CAS  Google Scholar 

  • Gerritse J, Renard V, Gomes TMP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

    CAS  Google Scholar 

  • Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC (1999) Influence of different electron donors and accepters on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65:5212–5221

    CAS  Google Scholar 

  • Gibson SA, Suflita JM (1986) Extrapolation of biodegradation results to groundwater aquifers reductive dehalogenation of aromatic compounds. Appl Environ Microbiol 52:681–688

    CAS  Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1992) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

    CAS  Google Scholar 

  • Gonzalez JF, Hu WS (1991) Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp. Appl Microbiol Biotechnol 35:100–104

    CAS  Google Scholar 

  • Goswami M, Shivaraman N, Singh RP (2002) Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1. World J Microbiol Biotechnol 18:779–783

    CAS  Google Scholar 

  • Guiot SR, Tartakovsky B, Lanthier M, Levesque MJ, Manuel MF, Beaudet R, Greer CW, Villemur R (2002) Strategies for augmenting the pentachlorophenol degradation potential of UASB anaerobic granules. Water Sci Technol 45:35–41

    CAS  Google Scholar 

  • Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related-compounds. FEMS Microbiol Rev 103:29–72

    CAS  Google Scholar 

  • Haggblom MM (1998) Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium. FEMS Microbiol Ecol 26:35–41

    CAS  Google Scholar 

  • Haggblom MM, Valo R (1995) Bioremediation of chlorophenol wastes. In: Young L, Cerniglia C (eds) Microbial Transformation and Degradation of Toxic Organic Chemicals. Wiley-Liss, New York, pp 389–434

    Google Scholar 

  • Haggblom MM, Young LY (1995) Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl Environ Microbiol 61:1546–1550

    CAS  Google Scholar 

  • Haggblom MM, Apajalahti JHA, Salkinoja-Salonen MS (1988a) O-methylation of chlorinated p hydroquinones by Rhodococcus chlorophenolicus. Appl Environ Microbiol 54:1818–1824

    CAS  Google Scholar 

  • Haggblom MM, Nohynek LJ, Salkinojasalonen MS (1988b) Degradation and o-methylation of chlorinated phenolic-compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol 54:3043–3052

    CAS  Google Scholar 

  • Haggblom MM, Rivera MD, Young LY (1993) Influence of alternative electron-acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59:1162–1167

    CAS  Google Scholar 

  • Haider K, Jagnow G, Kohnen R, Lim SU (1974) Degradation of chlorinated benzenes phenols and cyclo hexane derivatives by benzene utilizing and phenol utilizing soil bacteria under aerobic conditions. Arch Microbiol 96:183–200

    CAS  Google Scholar 

  • Hale DD, Rogers JE, Wiegel J (1990) Reductive dechlorination of dichlorophenols by nonadapted and adapted microbial communities in pond sediments. Microb Ecol 20:185–196

    CAS  Google Scholar 

  • Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568

    CAS  Google Scholar 

  • Hatcher PG, Bortiatynski JM, Minard R, Dec J, Bollag JM (1993) Use of high resolution 13C NMR to examine the enzymatic covalent binding of 13C-labeled 2,4-dichlorophenol to humic substances. Environ Sci Technol 27:2098–2103

    CAS  Google Scholar 

  • He Q, Sanford RA (2002) Induction characteristics of reductive dehalogenation in the ortho-halophenol-respiring bacterium, Anaeromyxobacter dehalogenans. Biodegradation 13:307–316

    CAS  Google Scholar 

  • He Q, Sanford RA (2003) Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans. Appl Environ Microbiol 69:2712–2718

    CAS  Google Scholar 

  • He Q, Sanford RA (2004) The generation of high biomass from chlororespiring bacteria using a continuous fed-batch bioreactor. Appl Microbiol Biotechnol 65:377–382

    CAS  Google Scholar 

  • Hendriksen HV, Ahring BK (1992) Metabolism and kinetics of pentachlorophenol transformation in anaerobic granular sludge. Appl Microbiol Biotechnol 37:662–666

    CAS  Google Scholar 

  • Hendriksen HV, Larsen S, Ahring BK (1992) Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge. Appl Environ Microbiol 58:365–370

    CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans-Bi-7/2. J Basic Microbiol 34:163–172

    CAS  Google Scholar 

  • Hofrichter M, Gunther T, Fritsche W (1993) Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation 3:415–421

    CAS  Google Scholar 

  • Hollender J, Hopp J, Dott W (2000) Cooxidation of chloro- and methylphenols by Alcaligenes xylosoxidans JH1. World J Microbiol Biotechnol 16:445–450

    CAS  Google Scholar 

  • Hu ZC, Korus RA, Levinson WE, Crawford RL (1994) Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilized Flavobacterium. Environ Sci Technol 28:491–496

    CAS  Google Scholar 

  • Hwang HM, Hodson RE, Lee RF (1986) Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. Environ Sci Technol 20:1002–1007

    CAS  Google Scholar 

  • Im WT, Bae HS, Yokota A, Lee ST (2004) Herbaspirillum chlorophenolicum sp nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855

    CAS  Google Scholar 

  • Jacobsen BN, Arvin E (1996) Biodegradation kinetics and fate modelling of pentachlorophenol in bioaugmented activated sludge reactors. Water Res 30:1184–1194

    CAS  Google Scholar 

  • Jarvinen KT, Melin ES, Puhakka JA (1994) High-rate bioremediation of chlorophenol-contaminated groundwater at low-temperatures. Environ Sci Technol 28:2387–2392

    CAS  Google Scholar 

  • Jaspers CJ, Ewbank G, McCarthy AJ, Penninckx MJ (2002) Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost. J Appl Microbiol 92:127–133

    CAS  Google Scholar 

  • Joshi DK, Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785

    CAS  Google Scholar 

  • Juteau P, Beaudet R, McSween G, Lepine F, Bisaillon JG (1995) Study of the reductive dechlorination of pentachlorophenol by a methanogenic consortium. Can J Microbiol 41:862–868

    CAS  Google Scholar 

  • Kafkewitz D, Fava F, Armenante PM (1996) Effect of vitamins on the aerobic degradation of 2-chlorophenol, 4-chlorophenol, and 4-chlorobiphenyl. Appl Microbiol Biotechnol 46:414–421

    CAS  Google Scholar 

  • Kao CM, Chai CT, Liu JK, Yeh TY, Chen KF, Chen SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672

    CAS  Google Scholar 

  • Kao CM, Liu JK, Chen YL, Chai CT, Chen SC (2005) Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU chloride release. J Hazard Mater 124:68–73

    CAS  Google Scholar 

  • Karamanev DG, Samson R (1998) High-rate biodegradation of pentachlorophenol by biofilm developed in the immobilized soil bioreactor. Environ Sci Technol 32:994–999

    CAS  Google Scholar 

  • Kargi F, Eker S (2004) Toxicity and batch biodegradation kinetics of 2,4 dichlorophenol by pure Pseudomonas putida culture. Enzyme Microb Technol 35:424–428

    CAS  Google Scholar 

  • Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid degrading Pseudomonas cepacia. Appl Environ Microbiol 46:1176–1181

    CAS  Google Scholar 

  • Kaschabek SR, Kasberg T, Muller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302

    CAS  Google Scholar 

  • Kazumi J, Haggblom MM, Young LY (1995) Degradation of monochlorinated and nonchlorinated aromatic-compounds under iron-reducing conditions. Appl Environ Microbiol 61:4069–4073

    CAS  Google Scholar 

  • Kennedy KJ, Ning Z, Fernandes L (2001) Modeling simultaneous removal of primary substrates and chlorinated phenols in upflow anaerobic sludge blanket reactors. Can J Civil Eng 28:910–921

    CAS  Google Scholar 

  • Khodadoust AP, Wagner JA, Suidan MT, Brenner RC (1997) Anaerobic treatment of PCP in fluidized-bed GAC bioreactors. Water Res 31:1776–1786

    CAS  Google Scholar 

  • Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol 44:72–78

    CAS  Google Scholar 

  • Kim MH, Hao OJ (1999) Cometabolic degradation of chlorophenols by Acinetobacter species. Water Res 33:562–574

    CAS  Google Scholar 

  • Kim JH, Oh KK, Lee ST, Kim SW, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem 37:1367–1373

    CAS  Google Scholar 

  • Kiyohara H, Takizawa N, Uchiyama T, Ikarugi H, Nagao K (1989) Degradability of polychlorinated phenols by bacterial-populations in soil. J Ferment Bioeng 67:339–344

    CAS  Google Scholar 

  • Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N (1992) Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol 58:1276–1283

    CAS  Google Scholar 

  • Klecka GM, Maier WJ (1985) Kinetics of microbial growth on pentachlorophenol. Appl Environ Microbiol 49:46–53

    CAS  Google Scholar 

  • Knackmuss HJ, Hellwig M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp B-13. Arch Microbiol 117:1–7

    CAS  Google Scholar 

  • Koh SC, McCullar MV, Focht DD (1997) Biodegradation of 2,4-dichlorophenol through a distal meta-fission pathway. Appl Environ Microbiol 63:2054–2057

    CAS  Google Scholar 

  • Kohring GW, Rogers JE, Wiegel J (1989) Anaerobic biodegradation of 2,4-dichlorophenol in fresh-water lake-sediments at different temperatures. Appl Environ Microbiol 55:348–353

    CAS  Google Scholar 

  • Krug M, Ziegler H, Straube G (1985) Degradation of phenolic-compounds by the yeast Candida tropicalis HP-15. 1. Physiology of growth and substrate utilization. J Basic Microbiol 25:103–110

    CAS  Google Scholar 

  • Krumme ML, Boyd SA (1988) Reductive dechlorination of chlorinated phenols in anaerobic upflow bioreactors. Water Res 22:171–177

    CAS  Google Scholar 

  • Kuwatsuka S, Igarashi M (1975) Degradation of PCP in soil. Soil Sci Plant Nutr 21:405–414

    CAS  Google Scholar 

  • Laine MM, Jorgensen KS (1996) Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl Environ Microbiol 62:1507–1513

    CAS  Google Scholar 

  • Laine MM, Jorgensen KS (1997) Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environ Sci Technol 31:371–378

    CAS  Google Scholar 

  • Lallai A, Mura G (2004) Biodegradation of 2-chlorophenol in forest soil: effect of inoculation with aerobic sewage sludge. Environ Toxicol Chem 23:325–330

    CAS  Google Scholar 

  • Lamar RT, Dietrich DM (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl Environ Microbiol 56:3093–3100

    CAS  Google Scholar 

  • Lamar RT, Evans JW, Glaser JA (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ Sci Technol 27:2566–2571

    CAS  Google Scholar 

  • Lamar RT, Davis MW, Dietrich DM, Glaser JA (1994) Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaete sordida: a field demonstration. Soil Biol Biochem 26:1603–1611

    CAS  Google Scholar 

  • Langwaldt JH, Mannisto MK, Wichmann R, Puhakka JA (1998) Simulation of in situ subsurface biodegradation of polychlorophenols in air-lift percolators. Appl Microbiol Biotechnol 49:663–668

    CAS  Google Scholar 

  • Lanthier M, Villemur R, Lepine F, Bisaillon JG, Beaudet R (2000) Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. Environ Microbiol 2:703–708

    CAS  Google Scholar 

  • Lanthier M, Juteau P, Lepine F, Beaudet R, Villemur R (2005) Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor. Appl Environ Microbiol 71:1058–1065

    CAS  Google Scholar 

  • Larsen S, Hendriksen HV, Ahring BK (1991) Potential for thermophilic (50°C) anaerobic dechlorination of pentachlorophenol in different ecosystems. Appl Environ Microbiol 57:2085–2090

    CAS  Google Scholar 

  • Larsson P, Lemkemeier K (1989) Microbial mineralization of chlorinated phenols and biphenyls in sediment-water systems from humic and clear-water lakes. Water Res 23:1081–1086

    CAS  Google Scholar 

  • Letourneau L, Bisaillon JG, Lepine F, Beaudet R (1995) Spore-forming bacteria that carboxylate phenol to benzoic-acid under anaerobic conditions. Can J Microbiol 41:266–272

    Article  CAS  Google Scholar 

  • Leung KT, Cassidy MB, Shaw KW, Lee H, Trevors JT, LohmeierVogel EM, Vogel HJ (1997) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J Microbiol Biotechnol 13:305–313

    CAS  Google Scholar 

  • Li DY, Eberspacher J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp strain GP1. Appl Environ Microbiol 57:1920–1928

    CAS  Google Scholar 

  • Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol Bioeng 35:1125–1134

    CAS  Google Scholar 

  • Liu D, Maguire RJ, Pacepavicius G, Dutka BJ (1991) Biodegradation of recalcitrant chlorophenols by cometabolism. Environ Toxicol Water Qual 6:85–95

    CAS  Google Scholar 

  • Liu SM, Kuo CE, Hsu TB (1996) Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere 32:1287–1300

    CAS  Google Scholar 

  • Loffler FE, Sanford RA, Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol 62:3809–3813

    CAS  Google Scholar 

  • Loh KC, Wu TT (2006) Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Can J Chem Eng 84:356–367

    CAS  Google Scholar 

  • Londry KL, Fedorak PM (1992) Benzoic-acid intermediates in the anaerobic biodegradation of phenols. Can J Microbiol 38:1–11

    CAS  Google Scholar 

  • Londry KL, Fedorak PM (1993) Fluorophenols and 3-fluorobenzoate in phenol-degrading methanogenic cultures. Arch Microbiol 160:137–143

    CAS  Google Scholar 

  • Lora PO, Sjolund M, Tracol C, Morvan J (2000) Adaptation of an inoculum to 2,4,6-trichlorophenol biodegradation in an activated-sludge bioreactor. Water Sci Technol 42:179–183

    CAS  Google Scholar 

  • Madsen T, Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol 57:2453–2458

    CAS  Google Scholar 

  • Madsen T, Aamand J (1992) Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl Environ Microbiol 58:557–561

    CAS  Google Scholar 

  • Magar VS, Stensel HD, Puhakka JA, Ferguson JF (1999) Sequential anaerobic dechlorination of pentachlorophenol: competitive inhibition effect and a kinetic model. Environ Sci Technol 33:1604–1611

    CAS  Google Scholar 

  • Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360

    CAS  Google Scholar 

  • Makdessi K, Lechner U (1997) Purification and characterization of 2,4-dichlorophenol hydroxylase isolated from a bacterium of the alpha-2 subgroup of the Proteobacteria. FEMS Microbiol Lett 157:95–101

    Article  CAS  Google Scholar 

  • Mannisto MK, Tiirola MA, Puhakka JA (2001) Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301

    CAS  Google Scholar 

  • Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197

    CAS  Google Scholar 

  • Marr J, Kremer S, Sterner O, Anke H (1996) Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 7:165–171

    CAS  Google Scholar 

  • Matus V, Sanchez MA, Martinez M, Gonzalez B (2003) Efficient degradation of 2,4,6-trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 69:7108–7115

    CAS  Google Scholar 

  • McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40

    CAS  Google Scholar 

  • Melin ES, Ferguson JF, Puhakka JA (1997) Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Appl Microbiol Biotechnol 47:675–682

    CAS  Google Scholar 

  • Melin ES, Jarvinen KT, Puhakka JA (1998a) Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res 32:81–90

    CAS  Google Scholar 

  • Melin ES, Puhakka JA, Ferguson JF (1998b) Enrichment and operation strategies for polychlorophenol degrading microbial cultures in an aerobic fluidized-bed reactor. Water Environ Res 70:171–180

    CAS  Google Scholar 

  • Melin ES, Puhakka JA, Shieh WK (1993) Degradation of 4-chlorophenol in denitrifying fluidized-bed process. J Environ Sci Health A 28:1801–1811

    Google Scholar 

  • Menke B, Rehm HJ (1992) Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp A7–2. Appl Microbiol Biotechnol 37:655–661

    CAS  Google Scholar 

  • Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol 62:4361–4366

    CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol 52:861–865

    CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1988) Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge. Environ Sci Technol 22:1411–1414

    CAS  Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889

    CAS  Google Scholar 

  • Miller MN, Stratton GW, Murray G (2004) Effects of nutrient amendments and temperature on the biodegradation of pentachlorophenol contaminated soil. Water Air Soil Poll 151:87–101

    CAS  Google Scholar 

  • Milliken CE, Meier GP, Sowers KR, May HD (2004) Chlorophenol production by anaerobic microorganisms: transformation of a biogenic chlorinated hydroquinone metabolite. Appl Environ Microbiol 70:2494–2496

    CAS  Google Scholar 

  • Mohn H, Puhakka JA, Ferguson JF (1999) Effects of electron donors on degradation of pentachlorophenol in a methanogenic fluidized, bed, reactor. Environ Technol 20:909–920

    Article  CAS  Google Scholar 

  • Mohn WW, Kennedy KJ (1992) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl Environ Microbiol 58:1367–1370

    CAS  Google Scholar 

  • Moos LP, Kirsch EJ, Wukasch RF, Grady CPLJ (1983) Pentachlorophenol biodegradation 1. Aerobic. Water Res 17:1575–1584

    CAS  Google Scholar 

  • Nakagawa A, Osawa S, Hirata T, Yamagishi Y, Hosoda J, Horikoshi T (2006) 2,4-dichlorophenol degradation by the soil fungus Mortierella sp. Biosci Biotechnol Biochem 70:525–527

    CAS  Google Scholar 

  • Nevalainen I, Kostyal E, Nurmiaholassila EL, Puhakka JA, Salkinoja-Salonen MS (1993) Dechlorination of 2,4,6-trichlorophenol by a nitrifying biofilm. Water Res 27:757–767

    CAS  Google Scholar 

  • Nicholson DK, Woods SL, Istok JD, Peek DC (1992) Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium. Appl Environ Microbiol 58:2280–2286

    CAS  Google Scholar 

  • Ning Z, Kennedy KJ, Fernandes L (1997) Anaerobic degradation kinetics of 2,4-dichlorophenol (2,4-DCP) with linear sorption. Water Sci Technol 35:67–75

    CAS  Google Scholar 

  • Nohynek LJ, Suhonen EL, Nurmiaho-Lassila EL, Hantula J, Salkinoja-Salonen M (1995) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp nov. Syst Appl Microbiol 18:527–538

    Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    CAS  Google Scholar 

  • Oh ET, So JS, Kim BH, Kim JS, Koh SC (2004) Green fluorescent protein as a marker for monitoring a pentachlorophenol degrader Sphingomonas chlorophenolica ATCC39723. J Microbiol 42:243–247

    CAS  Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398

    CAS  Google Scholar 

  • Okeke BC, Paterson A, Smith JE, WatsonCraik IA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biotechnol 48:563–569

    CAS  Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288

    CAS  Google Scholar 

  • Orser CS, Dutton J, Lange C, Jablonski P, Xun L, Hargis M (1993) Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination. J Bacteriol 175:2640–2644

    CAS  Google Scholar 

  • Pallerla S, Chambers RP (1998) Reactor development for biodegradation of pentachlorophenol. Catal Today 40:103–111

    CAS  Google Scholar 

  • Parker WJ, Farquhar GJ, Hall ER (1993) Removal of chlorophenolics and toxicity during high-rate anaerobic treatment of segregated kraft mill bleach plant effluents. Environ Sci Technol 27:1783–1789

    CAS  Google Scholar 

  • Pignatello JJ, Martinson MM, Steiert JG, Carlson RE, Crawford RL (1983) Biodegradation and photolysis of penta chloro phenol in artificial fresh water streams. Appl Environ Microbiol 46:1024–1031

    CAS  Google Scholar 

  • Pitter P (1975) Determination of biological degradability of organic substances. Water Res 10:231–235

    Google Scholar 

  • Polnisch E, Kneifel H, Frankze H, Hofman KH (1992) Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2:193–199

    CAS  Google Scholar 

  • Puhakka JA, Herwig RP, Koro PM, Wolfe GV, Ferguson JF (1995a) Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor. Appl Microbiol Biotechnol 42:951–957

    CAS  Google Scholar 

  • Puhakka JA, Melin ES, Jarvinen KT, Koro PM, Rintala JA, Hartikainen P, Shieh WK, Ferguson JF (1995b) Fluidized-bed biofilms for chlorophenol mineralization. Water Sci Technol 31:227–235

    CAS  Google Scholar 

  • Puhakka JA, Jarvinen KT, Langwaldt JH, Melin ES, Mannisto MK, Salminen JM, Sjolund MT (2000) On-site and in situ bioremediation of wood-preservative contaminated groundwater. Water Sci Technol 42:371–376

    CAS  Google Scholar 

  • Quan XC, Shi HC, Zhang YM, Wang HL, Qian Y (2004) Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Sep Purif Technol 34:97–103

    CAS  Google Scholar 

  • Radehaus PM, Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high-concentrations of pentachlorophenol. Appl Environ Microbiol 58:2879–2885

    CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  Google Scholar 

  • Reddy GVB, Gold MH (2001) Purification and characterization of glutathione conjugate reductase: a component of the tetrachlorohydroquinone reductive dehalogenase system from Phanerochaete chrysosporium. Arch Biochem Biophys 391:271–277

    CAS  Google Scholar 

  • Reddy GVB, Gelpke MDS, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180:5159–5164

    CAS  Google Scholar 

  • Resnick S-M, Chapman P-J (1994) Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation 5:47–54

    CAS  Google Scholar 

  • Rigot J, Matsumura F (2002) Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings. J Environ Sci Health B 37:201–210

    Google Scholar 

  • Rutgers M, Bogte JJ, Breure AM, Vanandel JG (1993) Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentration-controlled continuous-culture. Appl Environ Microbiol 59:3373–3377

    CAS  Google Scholar 

  • Rutgers M, Gooch DD, Breure AM, VanAndel JG (1996) Assessment of inhibition kinetics of the growth of strain P5 on pentachlorophenol under steady-state conditions in a nutristat. Arch Microbiol 165:194–200

    CAS  Google Scholar 

  • Rutgers M, Breure AM, vanAndel JG, Duetz WA (1997) Growth yield coefficients of Sphingomonas sp. strain P5 on various chlorophenols in chemostat culture. Appl Microbiol Biotechnol 48:656–661

    CAS  Google Scholar 

  • Ruttimann-Johnson C, Lamar RT (1996) Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Appl Environ Microbiol 62:3890–3893

    CAS  Google Scholar 

  • Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518

    CAS  Google Scholar 

  • Saez PB, Rittmann BE (1991) Biodegradation kinetics of 4-chlorophenol, an inhibitory co-metabolite. Res J Water Pollut Control Fed 63:838–847

    CAS  Google Scholar 

  • Sahinkaya E, Dilek FB (2005) Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge – evaluation of biokinetic coefficients. Environ Res 99:243–252

    CAS  Google Scholar 

  • Sanchez MA, Vasquez M, Gonzalez B (2004) A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol. Appl Environ Microbiol 70:7567–7570

    CAS  Google Scholar 

  • Sanford RA, Cole JR, Loffler FE, Tiedje JN (1996) Characterization of Desulfitobacterium chlororespirans sp nov, which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808

    CAS  Google Scholar 

  • Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    CAS  Google Scholar 

  • Schlosser D, Fahr K, Karl W, Wetzstein HG (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66:2479–2483

    CAS  Google Scholar 

  • Schmidt LM, Delfino JJ, Preston JF, St Laurent G (1999) Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater. Chemosphere 38:2897–2912

    CAS  Google Scholar 

  • Schwien U, Schmidt E (1982) Improved degradation of monochlorophenols by a constructed Strain. Appl Environ Microbiol 44:33–39

    CAS  Google Scholar 

  • Seiglemurandi F, Steiman R, Benoitguyod JL (1991) Biodegradation potential of some micromycetes for pentachlorophenol. Ecotox Environ Saf 21:290–300

    CAS  Google Scholar 

  • Seiglemurandi F, Steiman R, Benoitguyod JL, Guiraud P (1992) Biodegradation of pentachlorophenol by micromycetes. 1. Zygomycetes. Environ Toxicol Water Qual 7:125–139

    CAS  Google Scholar 

  • Sharpee KW, Duxbury JM, Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp – accumulation of a chlorobutenolide. Appl Microbiol 26:445–447

    CAS  Google Scholar 

  • Shen DS, Liu XW, He YH (2005) Studies on adsorption, desorption and biodegradation of pentachlorophenol by the anaerobic granular sludge in an upflow anaerobic sludge blanket (UASB) reactor. J Hazard Mater 125:231–236

    CAS  Google Scholar 

  • Shen DS, He R, Liu XW, Long Y (2006) Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor. J Hazard Mater 136:645–653

    CAS  Google Scholar 

  • Sjoblad RD, Bollag JM (1977) Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl Environ Microbiol 33:906–910

    CAS  Google Scholar 

  • Smith JA, Novak JT (1987) Biodegradation of chlorinated phenols in subsurface soils. Water Air Soil Poll 33:29–42

    CAS  Google Scholar 

  • Snyder CJP, Asghar M, Scharer JM, Legge RL (2006) Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions. Biodegradation 17:535–544

    CAS  Google Scholar 

  • Solyanikova IP, Golovleva LA (2004) Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects. J Environ Sci Health B 39:333–351

    Google Scholar 

  • Spain JC, Gibson DT (1988) Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp strain JS6. Appl Environ Microbiol 54:1399–1404

    CAS  Google Scholar 

  • Sponza DT, Ulukoy AE (2005) Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system. Process Biochem 40:3419–3428

    CAS  Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a penta chloro phenol degrading bacterium. Appl Environ Microbiol 44:1421–1427

    CAS  Google Scholar 

  • Steiert JG, Crawford RL (1985) Microbial degradation of chlorinated phenols. Trends Biotechnol 3:300–305

    CAS  Google Scholar 

  • Steiert JG, Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun 141:825–830

    CAS  Google Scholar 

  • Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z (2006) Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme Microb Technol 39:1036–1041

    CAS  Google Scholar 

  • Stuart SL, Woods SL (1998) Kinetic evidence for pentachlorophenol-dependent growth of a dehalogenating population in a pentachlorophenol- and acetate-fed methanogenic culture. Biotechnol Bioeng 57:420–429

    CAS  Google Scholar 

  • Sun BL, Cole JR, Sanford RA, Tiedje JM (2000) Isolation and characterization of Desulfovibrio dechloracetivorans sp nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66:2408–2413

    CAS  Google Scholar 

  • Susarla S, Yonezawa Y, Nakanishi J, Masunaga S (1997) Anaerobic transformation of kinetics and pathways of chlorophenols in fresh water lake sediment. Water Sci Technol 36:99–105

    CAS  Google Scholar 

  • Suzuki T (1983) Methylation and hydroxylation of pentachlorophenol by Mycobacterium sp isolated from soil. J Pestic Sci 8:419–428

    CAS  Google Scholar 

  • Takeuchi R, Suwa Y, Yamagishi T, Yonezawa Y (2000) Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols. Chemosphere 41:1457–1462

    CAS  Google Scholar 

  • Tarao M, Seto M (2000) Estimation of the yield coefficient of Pseudomonas sp strain DP-4 with a low substrate (2,4-dichlorophenol [DCP]) concentration in a mineral medium from which uncharacterized organic compounds were eliminated by a non-DCP-degrading organism. Appl Environ Microbiol 66:566–570

    CAS  Google Scholar 

  • Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362

    CAS  Google Scholar 

  • Tartakovsky B, Manuel MF, Beaumier D, Greer CW, Guiot SR (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnol Bioeng 73:476–483

    CAS  Google Scholar 

  • Thakur IS, Verma PK, Upadhaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp from a chemostat. Biochem Biophys Res Commun 286:109–113

    CAS  Google Scholar 

  • Thakur IS, Verma P, Upadhayaya K (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp from the chemostat. Biochem Biophys Res Commun 290:770–774

    CAS  Google Scholar 

  • Thibodeau J, Gauthier A, Duguay M, Villemur R, Lepine F, Juteau P, Beaudet R (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 70:4532–4537

    CAS  Google Scholar 

  • Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D Metabolism – pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17:1021–1026

    CAS  Google Scholar 

  • Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501

    CAS  Google Scholar 

  • Tiirola MA, Busse HJ, Kampfer P, Mannisto MK (2005) Novosphingobium lentum sp nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588

    CAS  Google Scholar 

  • Tront JM, Amos BK, Loffler FE, Saunders FM (2006) Activity of Desulfitobacterium sp strain Viet1 demonstrates bioavailability of 2,4-dichlorophenol previously sequestered by the aquatic plant Lemna minor. Environ Sci Technol 40:529–535

    CAS  Google Scholar 

  • Tuomela M, Lyytikainen M, Oivanen P, Hatakka A (1999) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31:65–74

    CAS  Google Scholar 

  • Tyler JE, Finn RK (1974) Growth rates of a Pseudomonad on 2,4-D and 2,4 dichlorophenol. Appl Microbiol 28:181–184

    CAS  Google Scholar 

  • Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234

    CAS  Google Scholar 

  • Uotila JS, Salkinoja-Salonen MS, Apajalahti JHA (1991) Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation 2:25–31

    CAS  Google Scholar 

  • Uotila JS, Kitunen VH, Saastamoinen T, Coote T, Haggblom MM, Salkinoja-Salonen MS (1992) Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J Bacteriol 174:5669–5675

    CAS  Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen-nov, sp-nov, an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  CAS  Google Scholar 

  • Utkin I, Dalton DD, Wiegel J (1995) Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61:346–351

    CAS  Google Scholar 

  • Valenzuela J, Bumann U, Cespedes R, Padilla L, Gonzalez B (1997) Degradation of chlorophenols by Alcaligenes eutrophus JMP134(pJP4) in bleached kraft mill effluent. Appl Environ Microbiol 63:227–232

    CAS  Google Scholar 

  • Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol 173:345–352

    CAS  Google Scholar 

  • Valo RJ, Haggblom MM, Salkinoja-Salonen MS (1990) Bioremediation of chlorophenol containing simulated ground water by immobilized bacteria. Water Res 24:253–258

    CAS  Google Scholar 

  • van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJM, de Vos WM (1999) Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274:20287–20292

    Google Scholar 

  • van de Pas BA, Gerritse J, de Vos WM, Schraa G, Stams AJM (2001) Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Arch Microbiol 176:165–169

    Google Scholar 

  • Villemur R, Lanthier M, Beaudet R, Lepine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733

    CAS  Google Scholar 

  • Visvanathan C, Thu LN, Jegatheesan V, Anotai J (2005) Biodegradation of pentachlorophenol in a membrane bioreactor. Desalination 183:455–464

    CAS  Google Scholar 

  • Walter M, Boul L, Chong R, Ford C (2004) Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J Environ Manage 71:361–369

    CAS  Google Scholar 

  • Wang SJ, Loh KC (1999) Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation 10:261–269

    CAS  Google Scholar 

  • Wang YT, Muthukrishnan S, Wang ZM (1998) Reductive dechlorination of chlorophenols in methanogenic cultures. J Environ Eng-ASCE 124:231–238

    CAS  Google Scholar 

  • Warner KA, Gilmour CC, Capone DG (2002) Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. FEMS Microbiol Ecol 40:159–165

    CAS  Google Scholar 

  • Watanabe I (1977) Pentachlorophenol decomposing and pentachlorophenol tolerant bacteria in field soil treated with pentachlorophenol. Soil Biol Biochem 9:99–103

    CAS  Google Scholar 

  • Watanabe I (1978) Pentachlorophenol decomposing activity of field soils treated annually with pentachlorophenol. Soil Biol Biochem 10:71–76

    CAS  Google Scholar 

  • Watkin AT, Eckenfelder WWJ (1989) A technique to determine unsteady-state inhibition kinetics in the activated sludge process. Water Sci Technol 21:593–602

    CAS  Google Scholar 

  • Wen JP, Li HM, Bai J, Jiang Y (2006) Biodegradation of 4-chlorophenol by Candida albicans PDY-07 under anaerobic conditions. Chinese J Chem Eng 14:790–795

    CAS  Google Scholar 

  • Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    CAS  Google Scholar 

  • WHO (1989) Chlorophenols other than pentachlorophenol. World Health Organization, Geneva

    Google Scholar 

  • Wittmann C, Zeng AP, Deckwer WD (1998) Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1. J Ind Microbiol Biotechnol 21:315–321

    CAS  Google Scholar 

  • Woods SL, Ferguson JF, Benjamin MM (1989) Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ Sci Technol 23:62–68

    CAS  Google Scholar 

  • Wu WM, Bhatnagar L, Zeikus JG (1993) Performance of anaerobic granules for degradation of pentachlorophenol. Appl Environ Microbiol 59:389–397

    CAS  Google Scholar 

  • Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD (1999) Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 38:7659–7669

    CAS  Google Scholar 

  • Xun LY, Webster CM (2004) A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions. J Biol Chem 279:6696–6700

    CAS  Google Scholar 

  • Xun LY, Bohuslavek J, Cai MA (1999) Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophys Res Commun 266:322–325

    CAS  Google Scholar 

  • Xun LY, Topp E, Orser CS (1992a) Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase. J Bacteriol 174:5745–5747

    CAS  Google Scholar 

  • Xun LY, Topp E, Orser CS (1992b) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007

    CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2005) Degradation of chlorophenols using pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica in a batch reactor. Curr Microbiol 51:156–160

    CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714

    CAS  Google Scholar 

  • Ye FX, Shen DS, Feng XS (2004) Anaerobic granule development for removal of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor. Process Biochem 39:1249–1256

    CAS  Google Scholar 

  • Yum KJ, Peirce JJ (1998a) Biodegradation kinetics of chlorophenols in immobilized-cell reactors using a white-rot fungus on wood chips. Water Environ Res 70:205–213

    CAS  Google Scholar 

  • Yum KJ, Peirce JJ (1998b) Continuous-flow wood chip reactor for biodegradation of 2,4-DCP. J Environ Eng-ASCE 124:184–190

    CAS  Google Scholar 

  • Zhang X, Wiegel J (1990) Sequential anaerobic degradation of 2 4 dichlorophenol in freshwater sediments. Appl Environ Microbiol 56:1119–1127

    CAS  Google Scholar 

  • Zilouei H, Guieysse B, Mattiasson B (2006) Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia. Process Biochem 41:1083–1089

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Eurochlor for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim A. Field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.A., Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7, 211–241 (2008). https://doi.org/10.1007/s11157-007-9124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-007-9124-5

Key words

Navigation