Skip to main content

Advertisement

Log in

An approach to genetic resources conservation of peripheral isolated plant populations: the case of an island narrow endemic species

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study reinforces the argument that forest genetic resources for peripheral isolated plant populations (PIPP) need to come under rationalistic assessment, for developing and proposing conservation strategies of forest genetic resources. Cedrus brevifolia is a narrow endemic island tree occurring in a sole population. Using biparentally and paternally inherited microsatellites, the genetic contribution and genetic variation patterns within sites (subpopulations) and within plantations of this species were assessed. The C. brevifolia population recorded uneven partition of genetic diversity at the site and at local scales; mirroring the demography and genetic evolutionary factors that occurred in long-term at the intra-species level. Results from the plantations imply that screening and rejection of unsuitable seedlings before plantation establishment did not influence the genetic divergence of planted trees from the general genetic pool of natural population. Based on these outcomes, numerous conservation measures are proposed, towards maintaining the species’ genetic resources. These measures need to ensure the dynamic processes within stands. Thus, this study argues that for PIPP which recorded high genetic diversity and non-uniform distribution of genetic viability (complex genetic patterns), the several small conservation units seem to be the most rationalistic conservation units. In such case, forest genetic micro-reserves (GMR) can be enacted, where on-the-point dynamic in situ conservation activities can be adopted, while the GMR could be used for ex situ conservation purposes. In conclusion, in PIPP the maintenance of genetic diversity should be regarded as one of the main prerequisites for sustainable management and long-term survival of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data archiving statement

The Data archiving statement Genotypes of the individuals analyzed are available from the Zenodo (general-purpose open-access repository): [10.5281/zenodo.3240552].

References

  • Abeli T, Gentili R, Rossi G, Bedini G, Foggi B (2009) Can the IUCN criteria be effectively applied to peripheral isolated plant populations? Biodivers Conserv 18:3877–3890

    Article  Google Scholar 

  • Aravanopoulos FA (2011) Genetic monitoring in natural perennial plant populations. Botany 89:75–81

    Article  Google Scholar 

  • Aravanopoulos FA (2018) Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 9:355

    Article  Google Scholar 

  • Balmford A, Bennun L, Brink BT, Cooper D, Côte IM et al (2005) The convention on biological diversity’s 2010 target. Science 307:212–213

    Article  CAS  PubMed  Google Scholar 

  • Banks SC, Finlayson GR, Lawson SJ, Lindenmayer DB, Paetkau D, Ward SJ, Taylor AC (2005) The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis. Biol Conserv 122:581–597

    Article  Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population sizes in plants: implications for conservation. In: Falk DA, Holsinger KA (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Birky CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondrial and chloroplast, and some results. Genetics 103:513–527

    PubMed  PubMed Central  Google Scholar 

  • Burney DA, Burney LP (2007) Paleoecology and “inter-situ” restoration on Kaua`i, Hawai`i. Front Ecol Environ 5:483–490

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaib J, Danan S, Jouaud L, Hagen S, Lefèvre F, Fady B (2006) Identification and characterization of nuclear microsatellite in Mediterranean cedar (Cedrus sp). Mol Ecol Notes 6:840–842

    Article  CAS  Google Scholar 

  • Christou AK (1997) Conservation of Cyprus cedar (Cedrus brevifolia (Hook.F.) Henry) genetic resources. Proceeding of the XI World Forestry Congress (FAO), Antalya, Turkey, 13–22 October 1997

  • Conte L, Cotti C, Schicchi R, Raimondo FM, Christofolini G (2004) Detection of ephemeral genetic sub-structure in the narrow endemic Abies nebrodensis (Lojac.) Mattei (Pinaceae) using RAPD markers. Plant Biosyst 138:279–289

    Article  Google Scholar 

  • Cyprus Forestry Department (2005) Cyprus. In: Merlo M, Croitoru L (eds) Valuing Mediterranean forests: towards total economic value. CABI Publishing, Wallingford, pp 213–228

    Google Scholar 

  • Dagher-Kharrat MB, Mariette S, Lefèvre F, Fady B, Grenier-de March G, Plomion C, Savouré A (2007) Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes 3:275–285

    Article  Google Scholar 

  • Delgado P, Piñero D, Chaos A, Pérez-Nasser N, Alvarez-Buylla ER (1999) High population differentiation and genetic variation in the endangered Mexican pine Pinus rzedowskii (Pinaceae). Am J Bot 86:669–676

    Article  CAS  PubMed  Google Scholar 

  • Department of Forests (2012) Inventory of cedar forest (Cedrus brevifolia) – 2010. Forest Management Section, Department of Forest, Ministry of Agriculture, Rural Development and Environment, Republic of Cyprus. (in Greek)

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Edwards DGW, El-Kassaby YA (1996) The biology and management of coniferous forest seeds: genetic perspectives. For Chron 72:481–484

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Eliades N-G, Eliades DG (2009) HAPLOTYPE ANALYSIS: Software for analysis of haplotype data. Distributed by the authors. Forest Genetics and Forest Tree Breeding, Georg-August University Goettingen, Germany. http://www.uni-goettingen.de/en/134935.html

  • Eliades N-G, Gailing O, Leinemann L, Fady B, Finkeldey R (2011) High genetic diversity and significant population structure in Cedrus brevifolia Henry, a narrow Mediterranean endemic tree from Cyprus. Plant Syst Evol 294:185–198

    Article  Google Scholar 

  • Eliades N-GH, Fady B, Gailing O, Leinemann L, Finkeldey R (2018) Significant patterns of fine-scale spatial genetic structure in a narrow endemic wind-dispersed tree species, Cedrus brevifolia Henry. Tree Genet Genomes 14:15

    Article  Google Scholar 

  • El-Kassaby YA (2000) Effect of forest tree domestication on gene polls. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. Principles and practice. CABI Publishing, Wallingford

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI Publishing, Wallingford, pp 119–162

    Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Eriksson G (2005) Multiple population breeding system as a method to conserve genetic variation. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora Publishers, Zvolen, pp 585–600

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quaitro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fady B, Lefèvre F, Vendramin GG, Ambert A, Régnier C, Bariteau M (2008) Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet 9:85–95

    Article  Google Scholar 

  • Fady B, Aravanopoulos FA, Alizoti P, Mátyás C, von Wühlisch G, Westergren M, Belletti P, Cvjetkovic B, Ducci F, Huber G et al (2016a) Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. For Ecol Manage 375:66–75

    Article  Google Scholar 

  • Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016b) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Change 16:927–939

    Article  Google Scholar 

  • Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, Heidelberg, pp 237–267

    Book  Google Scholar 

  • Finkeldey R, Murillo O (1999) Contributions of subpopulations to total gene diversity. Theor Appl Genet 98:664–668

    Article  Google Scholar 

  • Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. For Ecol Manage 197:231–244

    Article  Google Scholar 

  • Fussi B, Westergren M, Aravanopoulos F, Baier R, Kavaliauskas D, Finzgar D, Alizoti P, Bozic G, Avramidou E, Konnert M, Kraigher H (2016) Forest genetic monitoring: an overview of concepts and definitions. Environ Monit Assess 188:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: implication for conservation of widespread species. Biol Conserv 123:113–123

    Article  Google Scholar 

  • Giannakopoulos C, Hadjinicolaou P, Kostopoulou E, Varotsos KV, Zerefos C (2010) Precipitation and temperature regime over Cyprus as a result of global climate change. Adv Geosci 23:17–24

    Article  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Graudal L, Aravanopoulos FA, Bennadji Z, Changtragoon S, Fady B, Kjaer E, Loo J, Ramamonjisoa L, Vendramin GG (2014) Global to local genetic diversity of evolutionary potential in tree species within and outside forests. For Ecol Manage 333:35–51

    Article  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005b) Geneland: a program for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407

    Article  CAS  PubMed  Google Scholar 

  • Gulbaba AG, Velioglu E, Ozer AS, Doerksen AH, Adams WT (1998) Population genetic structure of Kazdağ Fir (Abies equitrojani Ashers. Et Sint), a narrow endemic to Turkey. Implication for in situ conservation. In: Zencirci N, Kaya Z, Anikster Y, Adams WT (eds) Proceedings of international symposium on in situ conservation of plant genetic diversity, CRIFC, Ankara, pp 271–281

  • Hadjinicolaou P, Giannakopoulos C, Zerefos C, Lange MA, Pashiardis S, Lelieveld J (2011) Mid-21st century climate and weather extremes in Cyprus as projected by six regional climate models. Reg Environ Change 11:441

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hattemer HH (1997) Concepts and requirements in the conservation of forest genetic resources. Bocconea 7:329–343

    Google Scholar 

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Barlett, Sudbury

    Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: an unifying theme in ecology. Oikos 108:3–6

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of the species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. PNAS 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanduri VP, Sharma CM (2002) Pollen production, microsporangium dehiscence and pollen flow in Himalayan cedar (Cedrus deodara Roxb. Ex D. Don). Ann Bot 89:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskela J, Lefèvre F, Schüler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordács S, Myking T, Eysteinsson T, Souvannavong O, Fady B, De Cuyper B, Heinze B, von Wühlisch G, Ducousso A, Ditlevsen B (2013) Translating conservation genetics into management: pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49

    Article  Google Scholar 

  • Krouchi F, Derridja A, Lefèvre F (2004) Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. For Ecol Manage 197:181–189

    Article  Google Scholar 

  • Laikre L (2010) Genetic diversity is overlooked in international conservation policy implementation. Conserv Genet 11:349–354

    Article  Google Scholar 

  • Langella O (2002) Populations (version 1.2.28). Centre National de la Recherche Scientifique, France. IOP Publishing Web. http://fsffrance.org/science/biologie.en.html. Accessed 13 Apr 2011

  • Leblois R, Estoup A, Streiff R (2006) Genetics of recent habitat contraction and reduction in population size: does isolation by distance matter? Mol Ecol 15:3601–3615

    Article  PubMed  Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manage 197:257–271

    Article  Google Scholar 

  • Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC et al (2013) Dynamic conservation of forest genetic resources in 33 European Countries. Conserv Biol 27:373–384

    Article  PubMed  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategy in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, London, pp 53–80

    Google Scholar 

  • McCauley DE (1995) Effects of population dynamics on genetics in mosaic landscapes. In: Hanson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman & Hall, London, pp 178–198

    Chapter  Google Scholar 

  • Montgomery ME, Woodworth LM, Nurthen RK, Gilligan DM, Briscoe DA, Frankham R (2000) Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conserv Genet 1:33–43

    Article  CAS  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Myers ER, Chung MY, Chung MG (2007) Genetic diversity and spatial genetic structure of Pinus strobus (Pinaceae) across an island landscape inferred from allozyme and cpDNA markers. Plant Syst Evol 264:15–30

    Article  CAS  Google Scholar 

  • Nambiar EKS (1996) Sustaining productivity of forests as a continuing challenge to soil science. Soil Sci Soc Am J 60:1629–1642

    Article  CAS  Google Scholar 

  • Nasri N, Bojovic S, Vendramin GG, Fady B (2008) Population genetic structure of the relict Serbian spruce, Picea omorika, inferred from plastid DNA. Plant Syst Evol 217:1–7

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. PNAS 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey M, Gailing O, Leinemann L, Finkeldey R (2004) Molecular markers provide evidence for long-distance planting material transfer during plantation establishment of Dalbergia sissoo Roxb. in Nepal. Ann For Sci 61:603–606

    Article  CAS  Google Scholar 

  • Papageorgiou AC, Tsiripidis I, Mouratidis Th, Hatziskakis S, Gailing O, Eliades N-G, Vidalis A, Drouzas AD, Finkeldey R (2014) Complex fine-scale phylogeographical patterns in a putative refugial region for Fagus sylvatica (Fagaceae). Bot J Linn Soc 174:516–528

    Article  Google Scholar 

  • Parducci L, Szmidt AE, Ribeiro MM, Drouzas AD (2001) Taxonomic position and origin of the endemic sicilian fir Abies nebrodensis (Lojac.) Mattei based on allozyme analysis. For Genet 8:119–127

    Google Scholar 

  • Pattichis K, Kyriakou E (2013) Assessment of fertility and variation of cones’ and seeds’ traits of the endemic species Cedrus brevifolia (A. Henry). Dissertation, Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki. (in Greek)

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Qian W, Ge S, Hong D-Y (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449

    Article  CAS  Google Scholar 

  • Qiao C-Y, Ran J-H, Li Y, Wang X-Q (2007) Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Ann Bot 100:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B (2008) Life at the margin: the mating system of Mediterranean conifers. Web Ecol 8:94–102

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saro I, González-Pérez MA, García-Verdugo C, Sosa PA (2015) Patterns of genetic diversity in Phoenix canariensis, a widespread oceanic palm (species) endemic from the Canarian archipelago. Tree Genet Genomes 11:815

    Article  Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2006) Global biodiversity outlook 2. Montreal, 81 + vii pages

  • Simberloff D, Abele LG (1982) Refuge design and island biogeographic theory: effects of fragmentation. Am Nat 120:41–50

    Article  Google Scholar 

  • Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to historical and contemporary gene flow in plants. Tree 14:219–224

    CAS  PubMed  Google Scholar 

  • Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet? Glob Change Biol 21:32–47

    Article  Google Scholar 

  • Thirgood JV (1987) Cyprus: a chronicle of its forest, land and people. Univesity of British Columbia Press, Vancouver

    Google Scholar 

  • Torres-Díaz C, Ruiz E, González F, Fuentes G, Cavieres L (2007) Genetic diversity in Nothofagus alessandrii (Fagaceae), an endangered endemic tree species of the coastal Maulino forest of Central Chile. Ann Bot 100:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsintides T, Hadjikyriakos GN, Christodoulou CS (2002) Trees and shrubs in Cyprus. Cyprus Forest Association, Nicosia

    Google Scholar 

  • Tsintides T, Christodoulou CS, Delipetrou P, Georghiou K (2007) The red data book of the flora of Cyprus. Cyprus Forest Association, Nicosia, p 149

    Google Scholar 

  • Turchetto C, Segatto AL, Mäder G, Rodrigues DM, Bonatto SL, Freitas LB (2016) High levels of genetic diversity and population structure in an endemic and rare species: implications for conservation. AoB Plants 8:plw002

    Article  PubMed  PubMed Central  Google Scholar 

  • United Nations Decade on Biodiversity (2010) International year of biodiversity 2010. www.cbd.int/2010/biodiversity/. Accessed 6 Mar 2019

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wild AE (1879) Report on the forest in the south and west of the island of the Cyprus (Cyprus No 10). Harrison and Sons, London

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. Vol. 2. The theory of gene frequencies, vol 2. University of Chicago Press, Chicago

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Forests of Cyprus (DF) for providing the basic data for the map design and also for the valuable help in sampling. Warm gratitude is extended to Mr Konstantinos Papasavvas (Forest Officer at DF) for his help with the map layout, as well as to Dr. Andreas Christou (Chief Conservator of Forests at DF) and Mr Sotiris Soteriou (Forest Officer, 1st Grade, at DF) for providing information, based on the DF annual reports on the existing ex situ conservation for C. brevifolia. Writing of the manuscript was made possible by financial support to Nicolas-George Eliades: from the EVOLTREE Mobility Center of the European Network of Excellence (EVOLution of TREEs as drivers of terrestrial biodiversity, http://www.evoltree.org/) for visiting INRA Avignon, and from Erasmus+ “Staff training Mobility Program of Frederick University” for visiting the Forest Genetics Laboratory in Democritus University of Thrace.

Author information

Authors and Affiliations

Authors

Contributions

N-GE and RF conceived the study. N-GE completed the sampling in the field. N-GE and OG carried out the molecular analyses. N-GE, ACP and BF analyzed the data. N-GE, ACP, BF, OG, LL and RF contributed to the article written.

Corresponding author

Correspondence to Nicolas-George H. Eliades.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Assessment of genetic differentiation within and among sampling plots (and their site of origin) of C. brevifolia at nuclear (over four microsatellite loci) and plastid (haplotype) genomes
Table 5 Assessment of genetic differentiation using the two-sided test, specified after 10,000 permutations
Table 6 Genetic variation parameters at four microsatellite loci (multiloci) for each plot and for each site (Table 2 in Eliades et al. 2011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliades, NG.H., Papageorgiou, A.C., Fady, B. et al. An approach to genetic resources conservation of peripheral isolated plant populations: the case of an island narrow endemic species. Biodivers Conserv 28, 3005–3035 (2019). https://doi.org/10.1007/s10531-019-01812-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01812-w

Keywords

Navigation