Skip to main content
Log in

Geographical diversity and genetic relationships among Cedrus species estimated by AFLP

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic diversity was described in 17 cedar populations covering the geographical range of the four species of the genus Cedrus. The study was conducted using amplified fragment length polymorphism (AFLP) on haploid tissues (megagametophytes). Eleven selective AFLP primer pairs generated a total of 107 polymorphic amplification products. Correspondence and genetic distance analyses indicated that Cedrus deodara constitutes a separate gene pool from the Mediterranean cedars. Within Mediterranean cedars, we distinguished two groups: the first one is made of Cedrus atlantica, while the second one is made of Cedrus libani and Cedrus brevifolia, these latter two species being genetically similar despite important divergence previously observed for morphological and physiological traits. The lowest intrapopulation variability was found in the two C. deodara populations analyzed. Surprisingly, C. brevifolia, the endemic taxon from the island of Cyprus that is found in small and fragmented populations, showed one of the highest levels of diversity. This unexpected pattern of diversity and differentiation observed for C. brevifolia suggests a recent divergence rather than a relictual, declining population. Patterns of diversity within- and among-populations were used to test divergence and fragmentation hypotheses and to draw conclusions for the conservation of Cedrus gene pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alptekin CU, Bariteau M, Fabre JP (1997) Le cédre de Turquie: aire naturelle, insectes ravageurs, perspectives d’utilisation pour le reboisement en France. Rev For Fr 49:19–31

    Google Scholar 

  • Arbez M, Ferrandes P, Uyar N (1978) Contribution à l’étude de la variabilité géographique des cèdres. Ann Sci For 35:265–284

    Article  Google Scholar 

  • Bariteau A, Ferrandes P (1992) Les cédres. In: Gallais A, Bannerot H (eds) L’amélioration des plantes. INRA Editions, Versailles, pp 732–750

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, Population genetics software for Windows TM. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier

    Google Scholar 

  • Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown S, Siljak-Yakovlev S, Savouré A (2001) Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theor Appl Genet 103:846–854

    Article  Google Scholar 

  • Chaney WR, Basbous M (1978) The cedars of Lebanon, witnesses of history. Econ Bot 32:120–123

    Google Scholar 

  • Cointat M (1996) Le roman du cédre. Rev For Fr 48:503–517

    Article  Google Scholar 

  • Davis PH (1965) Flora of Turkey and East Aegean Islands, vol. I. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Debazac EF (1964) Manuel des conifères. ENGREF, Nancy

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Fabre JP, Bariteau M, Chalon A, Thevenet J (2001) Possibilités de multiplication de pucerons Cedrobium laportei Remaudiére (Homoptera, Lachnidae) sur différentes provenances du genre Cedrus et sur deux hybrides d’espéces, perpectives d’utilisation en France. International Meeting on Sylviculture of cork oak (Quercus suber L.) and Atlas cedar (Cedrus atlantica Manetti), Rabat, Morocco, pp 83–94

    Google Scholar 

  • Fady B (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 4:905–910

    Article  Google Scholar 

  • Fady B, Bariteau M, Fallour D, Giroud E, Lefèvre F (2000) Isozyme gene markers and taxonomy of Mediterrannean Cedrus species. In: Panetsos K (eds) Adaptation and selection of Mediterranean Pinus and Cedrus for sustainable afforestation of marginal lands. Proceedings of the final conference of the EU project FAIR CT95-0097. Aristotelian University of Thessaloniki, Mytilene, pp 21–26

    Google Scholar 

  • Fady B, Lefèvre F, Reynaud M, Vendramin GG, Bou Dagher-Kharrat M, Anzidei M, Pastorelli R, Savouré A, Bariteau M (2003) Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107:1132–1138

    Article  PubMed  CAS  Google Scholar 

  • FAO (1986) Databook on endangered tree and shrub species and provenances. In: FAO. Forestry paper 77, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Greuter W, Burdet HM, Long G (1984) Med-Checklist. vol. 1, Pteridophyta Gymnospermae Dicotylidonae (Acanthaceae-Gneoraceae), 2nd edn. Conservatoire et jardin Botanique de la ville de Genéve, Geneva

    Google Scholar 

  • Hoerling M, Kumar A (2004) The perfect ocean for drought. Science 299:691–694

    Article  CAS  Google Scholar 

  • Khuri S, Talhouk SN (1999) Cedars of Lebanon Cedrus libani A. Rich. In: Farjon A, Page CN (eds) Conifers: status survey and conservation action plan, IUCN, Gland, Switzerland, pp 108–111

    Google Scholar 

  • Ladjal M (2001) Variabilité de l’adaptation á la sécheresse des cèdres méditerranéens (Cedrus atlantica, C. brevifolia et C. libani), aspects écophysiologiques. Ph.D. Thesis, University of Nancy I, France

  • Lefèvre F, Achard P, Azais D, Smulders MJM, van der Schoot J, Bovenschen J, Ivens B, Storme V, Fluch S, Krystufek V, Castiglione S (2002) Distribution of Populus nigra genetic diversity within France and its consequences for ex situ conservation strategy. In: van Dam BC, Bordacs S (eds) Genetic diversity in river populations of European black poplar, Csiszar Nyomda, Budapest, pp 85–91

    Google Scholar 

  • Lefèvre F, Fady B, Fallour-Rubio D, Ghosn D, Bariteau M (2004) Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity 93:542–550

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalised regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea A, Konig AJ, Lowe BC, van Dam T, Barreneche C, Bodénès R, Streiff K, Burg K, Groppe R C, Munro H, Tabbener D, Kremer A (2002) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Quercus petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed  CAS  Google Scholar 

  • McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Article  Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis (TFPGA), version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences, Northern Arizona University, Flagstaff

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Pons A (1998) L’histoire du genre Cedrus d’aprés les données paléobotaniques disponibles. For Méditerr 14:236–242

    Google Scholar 

  • Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity. Theor Appl Genet 90:462–470

    Article  Google Scholar 

  • Quézel P (1998) Cèdres et cédraies du pourtour méditerranéen: signification bioclimatique et phytogéographique. For Méditerr 19:243–260

    Google Scholar 

  • Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier, Paris

    Google Scholar 

  • Renau-Morata B, Nebauer SG, Sales E, Allainguillaume J, Caligari P, Segura J (2005) Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. Am J Bot 92:875–884

    CAS  Google Scholar 

  • Roa A, Maya M, Duque M, Tohme J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manhiot species. Theor Appl Genet 95:741–750

    Article  CAS  Google Scholar 

  • Scaltsoyannes A (1999) Allozyme differentiation and phylogeny of cedar species. Silvae Genet 48:61–68

    Google Scholar 

  • Tohme J, Gonzalez D, Beebe S, Duque M (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Toth J (1984) Quelques éléments nouveaux pour mieux situer et caractériser le cèdre de l’Himalaya vis-á-vis du cèdre de l’Atlas et du cédre du Liban en France méridionale. Bull Soc Et Sci Nat, Vaucluse, pp 41–49

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Weeb DA (1964) Flora Europea, vol. 1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Vidakovic M (1991) Conifers. In: Brekalo B (eds) Morphology and variation. Graficki Zavod, Hrvatske, pp 129–136

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Winfield MO, Arnold GM, Cooper F, Le Ray J, White M, Karp A, Edwards KJ (1998) A study of genetic diversity in Populus nigra subsp. betufolia in the Upper Severn area of the UK using AFLP markers. Mol Ecol 7:3–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Michel Bariteau (France), Zeki Kaya, Fikret Isik (Turkey), Youssef Bardouka (Syria), Nizar Hani (Lebanon), and Neophyton (Cyprus) for supplying cedar seeds. This work was supported by an INCO-DC program (ERBIC 18CT 970 200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnould Savouré.

Additional information

Communicated by D. Grattapaglia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagher-Kharrat, M.B., Mariette, S., Lefèvre, F. et al. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics & Genomes 3, 275–285 (2007). https://doi.org/10.1007/s11295-006-0065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0065-x

Keywords

Navigation