Fungal communities do not recover after removing invasive Alliaria petiolata (garlic mustard)

Abstract

The negative impacts of non-native invasive plants on native plants has prompted intensive eradication efforts, but whether eradication can restore soil microbial communities that are also sensitive to invasion is generally not considered. Some invasive plants, like Alliaria petiolata (garlic mustard), specifically alter soils in ways that promote the invasion process. Garlic mustard disrupts mycorrhizas, increases fungal pathogen loads, and elevates soil nutrient availability and soil pH; thus, the fungal community and soil property responses to garlic mustard eradication may be key to restoring ecosystem function in invaded forests. We conducted a garlic mustard eradication experiment at eight temperate, deciduous forests. 1 and 3 years after initiating annual garlic mustard removal (hand pulling), we collected soil samples and characterized fungal community structure using DNA metabarcoding alongside a suite of edaphic properties. We found that fungal richness, the number of shared fungal species, fungal biomass, and the relative abundance of fungal guilds became less similar to invaded plots by year three of eradication and more similar to uninvaded reference plots. However, fungal community composition did not resemble uninvaded communities by the third year of eradication and remained comparable to invaded communities. Soil chemical and physical properties also remained similar to invaded conditions. Overall soil abiotic–biotic restoration was not observed after 3 years of garlic mustard removal. Garlic mustard eradications may therefore not achieve management goals until soil physical, chemical, and biological properties become more similar to uninvaded forested areas or at least more dissimilar to invaded conditions that can promote invasion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  3. Anderson RC, Kelley TM (1995) Growth of garlic mustard (Alliaria petiolata) in native soils of different acidity. Trans Ill State Acad Sci 88:91–96

    Google Scholar 

  4. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  5. Anthony M, Frey S, Stinson K (2017) Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8(9):e01951

  6. Bässler C, Heilmann-Clausen J, Karasch P, Brandl R, Halbwachs H (2015) Ectomycorrhizal fungi have larger fruiting bodies than saprotrophic fungi. Fungal Ecology 17:205–212

    Article  Google Scholar 

  7. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919

    Google Scholar 

  8. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  PubMed  Google Scholar 

  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bradshaw AD (1996) Underlying principles of restoration. Can J Fish Aquat Sci 53:3–9

    Article  Google Scholar 

  11. Bradshaw AD, Chadwick MJ (1980) The restoration of land: the ecology and reclamation of derelict and degraded land. University of California Press, California

    Google Scholar 

  12. Braman RS, Hendrix SA (2002) Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal Chem 61(24):2715–2718

    Article  Google Scholar 

  13. Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803

    Article  CAS  Google Scholar 

  14. Campbell R (1985) Longevity of Olpidium brassicae in air-dry soil and the persistence of the lettuce big-vein agent. Can J Bot 63:2288–2289

    Article  Google Scholar 

  15. Caruso T, Hempel S, Powell J, Barto E, Rillig M (2012) Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93:1115–1124

    Article  CAS  PubMed  Google Scholar 

  16. Castellano SM, Gorchov DL (2012) Reduced ectomycorrhizae on oak near invasive garlic mustard. Northeast Nat 19:1–24

    Article  Google Scholar 

  17. Chao A, Ma K, Hsieh T, Chiu C (2016) SpadeR (species-richness prediction and diversity estimation in R): an R package in CRAN. Program and User’s Guide also published at http://chao.stat.nthu.edu.tw/wordpress/software_download

  18. Corbin JD, D’antonio CM (2012) Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci Manag 5:117–124

    Article  Google Scholar 

  19. Core R Team (2013) R development core team. RA Lang Environ Stat Comput 55:275–286

    Google Scholar 

  20. Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Partel M, Reier U, Saks U, Singh R, Vasar M, Zobel M (2015) FUNGAL SYMBIONTS. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. https://doi.org/10.1126/science.aab1161

    Article  CAS  PubMed  Google Scholar 

  21. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  23. Elgersma KJ, Ehrenfeld JG, Yu S, Vor T (2011) Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia 167:733–745

    Article  PubMed  Google Scholar 

  24. Fernandez CW, Koide RT (2013) The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol 6:479–486

    Article  Google Scholar 

  25. Floudas D, Binder M, RileyR Barry K, Blanchette RA, Hrnrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  26. Glassman SI, Wang IJ, Bruns TD (2017) Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol 26:6960–6973

    Article  CAS  PubMed  Google Scholar 

  27. Grove S, Haubensak KA, Parker IM (2012) Direct and indirect effects of allelopathy in the soil legacy of an exotic plant invasion. Plant Ecol 213:1869–1882

    Article  Google Scholar 

  28. Güler P, Türkoglu A (2015) Screening of spore ornamentation of some mushrooms. J Biol Chem 43:119–125

    Google Scholar 

  29. Halbwachs H, Brandl R, Bässler C (2015) Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol 17:197–204

    Article  Google Scholar 

  30. Hartwright LM, Hunter PJ, Walsh JA (2010) A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol 114:26–33

    Article  CAS  PubMed  Google Scholar 

  31. Heilmann-Clausen J, Barron ES, Boddy L, Dahlberg A, Griffith GW, Nordén J, Ovaskainen O, Perini C, Senn-Irlet B, Halme P (2015) A fungal perspective on conservation biology. Conserv Biol 29:61–68

    Article  PubMed  Google Scholar 

  32. Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE (2012) New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kiehl K, Kirmer A, Donath TW, Rasran L, Hölzel N (2010) Species introduction in restoration projects–evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl Ecol 11:285–299

    Article  Google Scholar 

  34. Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol 12:14–25

    Article  Google Scholar 

  35. Lankau RA (2011) Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytol 189:536–548

    Article  PubMed  Google Scholar 

  36. Lankau RA, Bauer JT, Anderson MR, Anderson RC (2014) Long-term legacies and partial recovery of mycorrhizal communities after invasive plant removal. Biol Invasions 16:1979–1990

    Article  Google Scholar 

  37. Looney BP, Meidl P, Piatek MJ, Miettinen O, Martin FM, Matheny PB, Labbé JL (2018) Russulaceae: a new genomic dataset to study ecosystem function and evolutionary diversification of ectomycorrhizal fungi with their tree associates. New Phytol 218:54–65

    Article  CAS  PubMed  Google Scholar 

  38. Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Srivastava DS, Crowe SA (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943

    Article  PubMed  Google Scholar 

  39. Martiny JB, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, Goulden ML, Treseder KK, Allison SD (2017) Microbial legacies alter decomposition in response to simulated global change. ISME J 11:490

    Article  PubMed  Google Scholar 

  40. Meekins JF, McCarthy BC (2000) Responses of the biennial forest herb Alliaria petiolata to variation in population density, nutrient addition and light availability. J Ecol 88:447–463

    Article  Google Scholar 

  41. Mincheva T, Barni E, Varese G, Brusa G, Cerabolini B, Siniscalco C (2014) Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation. Acta Oecol 54:29–35

    Article  Google Scholar 

  42. Moeller HV, Peay KG, Fukami T (2014) Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol Ecol 87:797–806

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  44. Northeast Regional Climate Center (2018) CLIMOD2. http://climod2.nrcc.cornell.edu. Accessed Feb 2019

  45. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan’. Community ecology package, version 2(9)

  46. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  47. Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    Article  PubMed  Google Scholar 

  48. Pimental D (2007) Environmental and economic costs of vertebrate species invasions into the United States. Manag Vertebr Invasive Species 38:1–8

    Google Scholar 

  49. Pinheiro J, Bates D, DebRoy S, Sarkar D (2007) Linear and nonlinear mixed effects models. R package version 3:57

  50. Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe. Ecol Eng 17:55–62

    Article  Google Scholar 

  51. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  52. Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  53. Reid AM, Morin L, Downey PO, French K, Virtue JG (2009) Does invasive plant management aid the restoration of natural ecosystes? Biol Conserv 142:2342–2349

    Article  Google Scholar 

  54. Rejmánek M, Pitcairn M (2002) When is eradication of exotic pest plants a realistic goal. Turning the tide: the eradication of invasive species, 249–253

  55. Ries L, Fletcher RJ Jr, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  56. Rodgers VL, Stinson KA, Finzi AC (2008) Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience 58:426–436

    Article  Google Scholar 

  57. Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157

    Article  Google Scholar 

  58. Stanturf JA, Palik BJ, Williams MI, Dumroese RK, Madsen P (2014) Forest restoration paradigms. J Sustain For 33:S161–S194

    Article  Google Scholar 

  59. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:e140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stinson K, Kaufman S, Durbin L, Lowenstein F (2007) Impacts of garlic mustard invasion on a forest understory community. Northeast Nat 14:73–88

    Article  Google Scholar 

  61. Stinson K, Frey SD, Jackson MR, Coates-Connr E, Anthony MA, Martinez K (2018) Responses of non-native earthworms to experimental eradication of garlic mustard and implications for native vegetation. Ecosphere 9:e02353

    Article  Google Scholar 

  62. Tamura M, Tharayil N (2014) Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystes. New Phytol 203:110–124

    Article  CAS  PubMed  Google Scholar 

  63. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Fungal biogeography: global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  64. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861. https://doi.org/10.1073/pnas.0403458101

    Article  CAS  PubMed  Google Scholar 

  65. Török P, Helm A, Kiehl K, Buisoon E, Valkó O (2018) Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restor Ecol 26:65–72

    Article  Google Scholar 

  66. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  67. USDA NRCS National Plant Data Team (2018) Plant profile for Alliaria petiolata (garlic mustard). https://plants.usda.gov/core/profile?symbol=alpe4. Accessed Dec 2018

  68. Webster J, Weber R (2007) Introduction to fungi. Cambridge University Press, Cambridge

    Google Scholar 

  69. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc: Guide Methods Appl 18:315–322

    Google Scholar 

  70. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48:607–615

    Article  Google Scholar 

  71. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mel Knorr, Amber Kittle, and Christina Lyons for laboratory assistance. We thank Dustin Haines for field support. Sequencing was performed by James Ford and David Miller at the Center for Genomics and Bioinformatics at Indiana University. This work was funded by a U.S. Department of Defense Strategic Environmental Research and Development Program (SERDP) Grant (NRC2326) to KAS and SDF. Views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of Defense position or decision unless so designated by other official documentation. MAA was supported by a National Science Foundation Graduate Research Fellowship (DGE 1450271).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Anthony.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 124 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anthony, M.A., Stinson, K.A., Trautwig, A.N. et al. Fungal communities do not recover after removing invasive Alliaria petiolata (garlic mustard). Biol Invasions 21, 3085–3099 (2019). https://doi.org/10.1007/s10530-019-02031-8

Download citation

Keywords

  • Alliaria petiolata
  • Fungi
  • Garlic mustard
  • Invasive species
  • Mycorrhizal fungi
  • Mycorrhizal symbiosis
  • Restoration