Skip to main content
Log in

The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Senecio pterophorus (Compositae) is a perennial shrub native to eastern South Africa that was introduced into the Western Cape in South Africa and Australia approximately 100 years ago and into Europe (Italy and Spain) more than 25–30 years ago. In this study, the aims were to unravel the putative sources of the introduced populations and identify the changes in genetic diversity after invasion using molecular markers and phylogeographic and population genetic analyses. We sampled the entire area of distribution for S. pterophorus extensively. Based on the results, three lineages were established along a latitudinal and climatic gradient in the native range (south, central, central/north) with high levels of admixture. Multiple, independent introductions occurred in the four invaded ranges. The central/northern lineage (humid climate) was the primary source for all of the invaded regions (with drier climates), although a secondary role was revealed for the southern lineage in the Western Cape and the central/northern lineage in Australia and Spain. The genetic diversity was slightly lower in the Spanish and Australian populations than that in the native populations. A variety of demographic and genetic processes affected the amount and structure of genetic diversity in the invaded areas, including multiple introductions and admixture (Western Cape, Australia and Spain) as well as pre-invasive hybridization (Italy). The patterns of dispersion support a hypothesis of rapid evolution of S. pterophorus after invasion in response to novel climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405

    Article  CAS  PubMed  Google Scholar 

  • Aikio S, Duncan RP, Hulme PE (2010) Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–378

    Article  Google Scholar 

  • Andreu J, Pino J, Basnou C, Guardiola M, Ordóñez JL (2012) Les espècies exòtiques de Catalunya: Resum del projecte EXOCAT 2012. Generalitat de Catalunya, Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, Barcelona

  • Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186

    Article  Google Scholar 

  • Barberis G, Minuto L, Peccenini S (1998) Senecio grisebachii Baker (Compositae), new to the Italian flora. Webbia 52:201–206

    Article  Google Scholar 

  • Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galbany-Casals M, Vilatersana R (2013) Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 100:867–882

    Article  PubMed  Google Scholar 

  • Blair AC, Hufbauer RA (2010) Hybridization and invasion: one of North America’s most devastating invasive plants shows evidence for a history of interspecific hybridization. Evol Appl 7:40–51

    Article  Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Calvo J, Álvarez I, Aedo C, Pelser PB (2013) A phylogenetic analysis and new delimitation of Senecio sect. Crociseris (Compositae: Senecioneae), with evidence of intergeneric hybridization. Taxon 62:127–140

    Article  Google Scholar 

  • Caño L, Escarré J, Blanco-Moreno JM, Sans FX (2008) Assessing the effect of inbreeding and long-distance gene flow on the invasive potential of Senecio pterophorus (Asteraceae). Aust J Bot 56:539–549

    Article  Google Scholar 

  • Castells E, Morante M, Blanco-Moreno JM, Sans FX, Vilatersana R, Blasco-Moreno A (2013) Reduced seed predation after invasion supports enemy release in a broad biogeographical survey. Oecologia 173:1397–1409

    Article  PubMed  Google Scholar 

  • Castells E, Morante M, Goula M, Pérez N, Dantart J, Escolà A (2014a) Herbivores on native and exotic Senecio plants: is herbivore host switching related to plant novelty and insect diet breadth under field conditions? Insect Conserv Divers 7:420–431

    Article  Google Scholar 

  • Castells E, Mulder PJ, Pérez-Trujillo M (2014b) Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry 108:137–146

    Article  CAS  PubMed  Google Scholar 

  • Chamorro L, Caballero B, Blanco-Moreno JM, Caño L, Garcia-Serrano H, Masalles RM, Sans FX (2006) Ecología y distribución de Senecio pterophorus (Compositae) en la Península Ibérica. Ann Jard Bot Madrid 53:55–62

    Google Scholar 

  • Chun YJ, Fumanal B, Laitung B, Bretagnolle F (2010) Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol 185:1100–1107

    Article  PubMed  Google Scholar 

  • Coart E, Van Glabeke S, Petit RJ, Van Bockstaele E, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273

    Article  CAS  Google Scholar 

  • Colomer-Ventura F, Martínez-Vilalta J, Zuccarini P, Escolà A, Armengot L, Castells E (2015) Contemporany evolution of an invasive plant is associated with climate but not with herbivory. Funct Ecol 29:1475–1485

    Article  Google Scholar 

  • Corander J, Waldmann P, Marttinen P, Sillanpaa M (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369

    Article  CAS  PubMed  Google Scholar 

  • Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119

    Article  Google Scholar 

  • Dainese M, Kühn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16:815–831

    Article  Google Scholar 

  • Delisle F, Lavoie C, Jean M, Lachance D (2003) Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. J Biogeogr 30:1033–1042

    Article  Google Scholar 

  • DEPI (2014) Department of Environment and Primary Industries. State Government Victoria. http://www.depi.vic.gov.au. Accesssed 26 Nov 2014

  • Dirección General de Aduanas de España (1951–1986) Estadística del comercio exterior de España. Ministerio de Hacienda, Madrid

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptative evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Doorduin LJ, van den Hof K, Vrieling K, Joshi J (2010) The lack of genetic bottleneck in invasive Tansy ragwort population suggest multiple source populations. Basic Appl Ecol 11:244–250

    Article  Google Scholar 

  • Dormontt EE, Gardner MG, Breed MF, Rodger JG, Prentis PJ, Lowe AJ (2014) Genetic bottlenecks in time and space: reconstructing invasions from contemporary and historical collections. PLoS ONE 9:e106874. doi:10.1371/journal.pone.0106874

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Dickson EE (1987) Preservation of plant-samples for DNA restriction endonuclease analysis. Taxon 36:715–722

    Article  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383

    Article  CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellows I (2012) Deducer: a data analysis GUI for R. J Stat Softw 49:1–15

    Article  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamilton JA, Okada M, Korves T, Schmitt J (2015) The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol Ecol 24:2253–2263

    Article  PubMed  Google Scholar 

  • Heddle EM (1974) South African daisy in the national parks of South Australia. Environ Conserv 1:152

    Article  Google Scholar 

  • Hilliard OM (1977) Compositae in Natal. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. doi:10.1186/1471-2156-6-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH (2009) Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution 63:2061–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk H, Máčel M, Klinkhamer PG, Vrieling K (2004) Natural hybridization between Senecio jacobaea and Senecio aquaticus: molecular and chemical evidence. Mol Ecol 13:2267–2274

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of lizard species. Biol Lett 4:434–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowarik I, von der Lippe M (2007) Pathways in plant invasions. In: Nentwig W (ed) Biological invasions. Springer, Berlin Heidelberg, pp 29–47

    Google Scholar 

  • Lachmuth S, Durka W, Schurr FM (2010) The making of a rapid plant invader: genetic diversity and differentiation in the native and invaded range of Senecio inaequidens. Mol Ecol 19:3952–3967

    Article  PubMed  Google Scholar 

  • Lai Z, Kane NC, Kozik A, Hodgins KA, Dlugosch KM, Barker MS, Matvienko M, Yu Q, Turner KG, Pearl SA, Bell GDM, Zou Y, Grassa C, Guggisberg A, Adams KL, Anderson JV, Horvath DP, Kesseli RV, Burke JM, Michelmore RW, Rieseberg LH (2012) Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. Am J Bot 99:209–221

    Article  CAS  PubMed  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence ME (1985) Senecio L. (Asteraceae) in Australia: reproductive biology of a genus found primarily in unstable. Austral J Bot 33:197–208

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Levyns MR (1950) Compositae. In: Adamson RS, Salter TM (eds) Flora of the Cape peninsula. Juta, Cape Town, pp 808–818

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–572

    Article  Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Novak SJ, Mack RN (2005) Genetic bottlenecks in alien plant species: influence of mating systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer & Associates, Sunderlands, pp 201–227

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol Ecol 8:1239–1246

    Article  PubMed  Google Scholar 

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia, 2nd edn. CSIRO Publishing, Collingwood, pp 306–308

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Pino J, Afán I, Sans FX, Gutiérrez C (2000) Senecio pterophorus DC., a new alien species in the European mainland. Ann Jard Bot Madrid 58:188–189

    Google Scholar 

  • Preston CA, Pearman DA, Dines TD (2002) New altlas of the British and Irish flora: an atlas of the vascular plants of Britain, Ireland, the Isle of Man and the Channel Islands. Oxford University Press, Oxford

    Google Scholar 

  • Pritchard JK, Stephens M, Donnely PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Biol Conserv 17:230–237

    Article  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Robinson H, Carr GD, King RM, Powell AM (1997) Chromosome numbers in Compositae, XVII: Senecioneae III. Ann Mo Bot Gard 84:893–906

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc. Numerical taxonomy and multivariate analysis system, version 2.02j. Exeter Software, Setauket, New York

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sanz N, Araguas RM, Vidal O, Diez-del-Molino D, Fernández-Cebrián R, García-Marín JL (2013) Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes. Biol Invasions 15:2333–2346

    Article  Google Scholar 

  • Sax DF, Gaines SD (2003) Species diversity: from global decreases to local increases. Trends Ecol Evol 18:561–566

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pression in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Simberloff D (2013) Biological invasions: prospects for slowing a major global change. Elem Sci Anth 1:8. doi:10.12952/journal.elementa.000008

    Article  Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621

    Article  CAS  PubMed  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651

    Article  PubMed  Google Scholar 

  • Tel-Zur N, Abbo S, Mysladbodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17:249–254

    Article  CAS  Google Scholar 

  • The Council of Heads of Australasian Herbaria (2013) Australia’s Virtual Herbarium. http://avh.chah.org.au. Accessed 22 May 2014

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Vandepitte K, Meyer T, Helsen K, Acker K, Roldán-Ruiz I, Mergeay J, Honnay O (2014) Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol 23:2157–2164

    Article  PubMed  Google Scholar 

  • Vekemans X (2002) AFLP–SURV. Distributed by the author, Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Verloove F (2005) New records of interesting xenophytes in Spain. Lazaroa 26:141–148

    Google Scholar 

  • Verloove F (2006) Catalogue of neophytes in Belgium (1800–2005). National Botanic Garden of Belgium, Meise

    Google Scholar 

  • Verloove F, Banfi E, Galasso G (2007) Notulae: 1358–1363. Inform Bot Ital 39:418–420

    Google Scholar 

  • Vilatersana R, Susanna A, Brochmann C (2007) Genetic variation in Femeniasia (Compositae, Cardueae), an endemic and endangered monotypic genus from the Balearic Island (Spain). Bot J Linn Soc 153:97–107

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprint. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh NG (1999) Senecio. In: Walsh NG, Entwisle TJ (eds) Flora of Victoria, Dicotyledons: Cornaceae to Asteraceae, vol 4. Inkata Press, Melbourne, pp 941–965

    Google Scholar 

  • Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Philos Trans R Soc A 369:835–841

    Article  Google Scholar 

  • Zenni RD, Nuñez MA (2013) The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122:801–815

    Article  Google Scholar 

  • Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to José M. Blanco-Moreno (Universitat de Barcelona), Anna Escolà, and Maria Morante (Universitat Autònoma de Barcelona) for their assistance in collecting the plant samples used in this study. We also thank Bernat del Rey for assistance with Fig. 7 and Josep Maria Benaul (Universitat de Barcelona) for providing historical information on wool imports in Spain. The financial support provided to E.C. by Ministerio de Ciencia e Innovación (Spain) (GCL2008-02421/BOS) and Ministerio de Economía y Competitividad (Spain) (GCL2011-29205) to conduct this research is gratefully acknowledged. R.V. and A.G. are in the “Biodiversity and biosystematic vegetal” group (2014 SGR-514) and E.C. is in the “Response of ecosystems to climate change and environmental gradients” research group (2014 SGR-453), which are both funded by Generalitat de Catalunya (Catalonia). The permits for sampling were obtained from the corresponding authorities when required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Castells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilatersana, R., Sanz, M., Galian, A. et al. The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization. Biol Invasions 18, 2045–2065 (2016). https://doi.org/10.1007/s10530-016-1150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1150-1

Keywords

Navigation