Skip to main content

Advertisement

Log in

Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions are considered one of the main anthropogenic factors that reduce the abundance of native species. Understanding the patterns of population structure and behavior of introduced species is important to determine invasion sources and pathways, in addition to improving the protective management of native species. Thus, we set out to advance our knowledge about the mosquitofish Gambusia spp., which is an invasive species that was introduced to southern Europe in 1921 to control mosquito populations. We assessed the genetic diversity and population structure of this species at 13 European locations, by screening variation at six microsatellite loci. We also evaluated six American samples (four of G. holbrooki and two of G. affinis) to identify the most likely source of the populations that established in Europe, and to determine whether G. affinis is also present. The results showed that, while there was evidence of recent bottleneck events in a few isolated locations, most introduced populations harbored a considerable amount of gene diversity, probably because of multiple introductions and secondary contacts. Populations displayed strong genetic differentiation that was mainly associated with geographical distance. At least two main routes of colonization of G. holbrooki seem to have occurred in Europe. The first, and more ancient colonization, was consistent with historical records, with the species invading the Iberian Peninsula. A second and more recent colonization probably occurred in Greece and, from there, France. The presence of G. affinis was not detected in any of the European samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelkrim J, Pascal M, Calmet C, Samadi S (2005) Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conserv Biol 19:1509–1518

    Article  Google Scholar 

  • Alcaraz C, García-Berthou E (2007) Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol Conserv 139:83–92

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Artom C (1924) La specie di Gambusia acclimatata in Italia (Gambusia holbrooki Grd) in relazione colla stabilità del carattere del gonopodio. Atti Acc Naz Lincei 33:278–282

    Google Scholar 

  • Ayres RM, Pettigrove VJ, Hoffmann AA (2010) Low diversity and high levels of population genetic structuring in introduced eastern mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biol Invasions 12:3727–3744

    Article  Google Scholar 

  • Beneteau CL, Walter RP, Mandrak NE, Heath DD (2012) Range expansion by invasion: genetic characterization of invasion of the greenside darter (Etheostoma blennioides) at the northern edge of its distribution. Biol Invasions 14:191–201

    Article  Google Scholar 

  • Brown JE, Stepien CA (2009) Invasion genetics of the Eurasian round goby in North America: tracing sources and spread patterns. Mol Ecol 18:64–79

    PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • Ekmerkçi FG, Kirankaya SG (2006) Distribution of an invasive fish species, Pseudorasbora parva (Temminck & Schlegel, 1846) in Turkey. Turk J Zool 30:329–334

    Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? P Natl Acad Sci USA 97:7043–7050

    Article  CAS  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evo Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fernández-Delgado C, Rossomanno S (1997) Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. J Fish Biol 1:80–92

    Article  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • García-Berthou E, Alcaraz C, Pou-Rovira Q, Zamora L, Coenders G, Feo C (2005) Introduction pathways and establishment rates of invasive aquatic species in Europe. Can J Fish Aquat Sci 62:453–463

    Article  Google Scholar 

  • Garnier S, Alibert P, Audiot P, Prieur B, Rasplus J-Y (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT: a computer program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at http://www2.unil.ch/popgen/softwares/fstat.htm

  • Grapputo A, Bisazza A, Pilastro A (2006) Invasion success despite reduction of genetic diversity in the European populations of eastern mosquitofish (Gambusia holbrooki). Ital J Zool 73:67–73

    Article  CAS  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Martich JD, Smith MH (1990) Patterns of genetic variation in eastern mosquitofish (Gambusia holbrooki, Girard) from the piedmont and coastal plain of three drainages. Copeia 1990:619–630

    Article  Google Scholar 

  • Hernández-Martich JD, Smith MH (1997) Downstream gene flow and genetic structure of Gambusia holbrooki (eastern mosquitofish) populations. Heredity 79:295–301

    Article  Google Scholar 

  • Hernández-Martich JD, Novak JM, Smith MH, Johns PE (1995) Genetic structure of mosquitofish populations in the Altamaha and Ogeechee drainages of Georgia: reporting an undescribed form in the Ocmulgee River. Biochem Syst Ecol 23:617–625

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Innal D, Erk’akan F (2006) Effects of exotic and translocated fish species in the inland waters of Turkey. Rev Fish Biol Fish 16:39–50

    Article  Google Scholar 

  • Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–110

    Article  Google Scholar 

  • Krumholz LA (1948) Reproduction in the western mosquitofish, Gambusia affinis affinis (Biard & Girard), and its use in mosquito control. Ecol Monogr 18:1–43

    Article  Google Scholar 

  • Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s Algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • McElroy TC, Kandl KL, Trexler JC (2011) Temporal population genetic structure of eastern mosquitofish in a dynamic aquatic landscape. J Hered 102(6):678–687

    Article  PubMed  Google Scholar 

  • Nájera Angulo L (1944) Sobre la identificación de la Gambusia holbrookii. Bol R Soc Esp Hist Nat Biol 42:51–55

    Google Scholar 

  • Narum SR, Banks M, Beacham TD, Bellinger MR, Campbell MR, Dekoning J, Elz A, Guthrie CM, Kozfkay C, Miller KM, Moran P, Phillips R, Seeb LW, Smith CT, Warheit K, Young SF, Garza JC (2008) Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Mol Ecol 17:3464–3477

    PubMed  CAS  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Human Genetics 41:225–233

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Parker KM, Hughes K, Kim TJ, Hedrick PW (1998) Isolation and characterization of microsatellite loci from the Gila topminnow (Poeciliopsis o.occidentalis) and their utility in guppies (Poecilia reticulata). Mol Ecol 7:361–363

    CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (ver.3.3): a population genetics software for exact test and ecumenism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rincón PA, Correas AM, Morcillo F, Risueño P, Lobón-Cerviá J (2002) Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. J Fish Biol 61:1560–1585

    Article  Google Scholar 

  • Roark SA, Andrews JF, Guttman SI (2001) Population genetic structure of the western mosquitofish, Gambusia affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX. Ecotoxicology 10:223–227

    Article  PubMed  CAS  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Roux L, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Article  Google Scholar 

  • Ryynänen HJ, Tonteri A, Vasemägi A, Primmer CR (2007) A comparison of biallelic markers and microsatellites for the estimation of population and conservation genetic parameters in Atlantic salmon (Salmo salar). J Hered 98:692–704

    Article  PubMed  Google Scholar 

  • Sax DF, Brown JH (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371

    Article  Google Scholar 

  • Scalici M, Avetrani P, Gibertini G (2007) Mosquitofish life history in a Mediterranean wetland. J Nat Hist 41:887–900

    Article  Google Scholar 

  • Scribner KT, Avise JC (1993) Cytonuclear genetic architecture in mosquitofish populations and the possible roles of introgressive hybridization. Mol Ecol 2:139–149

    Article  Google Scholar 

  • Scribner KT, Avise JC (1994) Population cage experiments with a vertebrate: the temporal demography and cytonuclear genetics of hybridization in Gambusia fishes. Evolution 48:155–171

    Article  Google Scholar 

  • Sella M (1929) Gambusia e verde Parigi nella lotta antimalarica a Rovigno e cenni sulla lotta in Istria. Riv Malariol 8:357–392

    Google Scholar 

  • Specziár A (2004) Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a therma spa under temperate climate, of Lake Hévíz, Hungary. Hydrobiologia 522:249–260

    Article  Google Scholar 

  • Spencer CC, Chlan CA, Neigel JE, Scribner KT, Wooten MC, Leberg PL (1999) Polymorphic microsatellite markers in the western mosquitofish, Gambusia affinis. Mol Ecol 8:157–168

    PubMed  CAS  Google Scholar 

  • Stearns SC (1983) The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution 37:618–627

    Article  Google Scholar 

  • Suárez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360

    Article  PubMed  Google Scholar 

  • Therriault TW, Orlova MI, Docker MF, MacIsaac HJ, Heath DD (2005) Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in Eastern Europe: high gene flow and multiple introductions. Heredity 95:16–23

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vargas MJ, de Sostoa A (1996) Life history of Gambusia holbrooki (Piscies, Poeciliidae) in the Ebro delta (NE Iberian Peninsula). Hydrobiologia 341:215–224

    Article  Google Scholar 

  • Vidal O, García-Berthou E, Tedesco PA, García-Marín JL (2010) Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced in Europe. Biol Invasions 12:841–851

    Article  Google Scholar 

  • Vidal O, Sanz N, Araguas RM, Fernández-Cebrián R, Diez-del-Molino D, García-Marín JL (2012) SNP diversity in introduced populations of the invasive Gambusia holbrooki. Ecol Freshw Fish 21:100–108

    Article  Google Scholar 

  • Vilà M, García-Berthou E, Sol D, Pino J (2001) Survey of the naturalized plants and vertebrates in peninsular Spain. Ecol Mediterr 27:55–67

    Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Welcomme RL (1991) International introductions of freshwater fish species into Europe. Finn Fish Res 12:11–18

    Google Scholar 

  • Wooten MC, Lydeard C (1990) Allozyme variation in a natural contact zone between Gambusia affinis and Gambusia holbrooki. Biochem Syst Ecol 18:169–173

    Article  CAS  Google Scholar 

  • Wooten MC, Scribner KT, Smith MH (1988) Genetic variability and systematics of Gambusia in the southeastern United States. Copeia 1988:283–289

    Article  Google Scholar 

  • Zane L, Nelson WS, Jones AG, Avise JC (1999) Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish, Gambusia holbrooki. J Evol Biol 12:61–66

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the Spanish Ministry of Education and Science (MEC) research projects CGL2006-11652-C02-02/BOS and CGL2009-12877-C02-02. DDdM received a Ph.D. scholarship of the University of Girona. Two anonymous reviewers revised and improved this manuscript. Gail Schofield of Write Science Right revised and edited the English of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Araguas.

Additional information

N. Sanz and R. M. Araguas contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, N., Araguas, R.M., Vidal, O. et al. Genetic characterization of the invasive mosquitofish (Gambusia spp.) introduced to Europe: population structure and colonization routes. Biol Invasions 15, 2333–2346 (2013). https://doi.org/10.1007/s10530-013-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0456-5

Keywords

Navigation