Skip to main content
Log in

In vivo phosphorylation of a peptide tag for protein purification

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag.

Results

The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III).

Conclusion

The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berggren G, Garcia-Serres R, Brazzolotto X, Clemancey M, Gambarelli S, Atta M, Latour JM, Hernández HL, Subramanian S, Johnson MK, Fontecave M (2014) An EPR/HYSCORE, Mössbauer, and resonance Raman study of the hydrogenase maturation enzyme HydF: a model for N-coordination to [4Fe–4S] clusters. J Biol Inorg Chem 19:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blommel PG, Becker KJ, Duvnjak P, Fox BG (2009) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598

    Article  Google Scholar 

  • Buehl CJ, Deng X, Liu M, Hovde S, Xu X, Kuo MH (2014) Resolving acetylated and phosphorylated proteins by neutral urea Triton-polyacrylamide gel electrophoresis: NUT-PAGE. Biotechniques 57:72–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinier M, Petit M, Williams MN, Fabre RM, Pecorari F, Talham DR, Bujoli B, Tellier C (2009) Bisphosphonate adaptors for specific protein binding on zirconium phosphonate-based microarrays. Bioconjugate Chem 20:2270–2277

    Article  CAS  Google Scholar 

  • Cinier M, Petit M, Pecorari F, Talham DR, Bujoli B, Tellier C (2012) Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. J Biol Inorg Chem 17:399–407

    Article  CAS  PubMed  Google Scholar 

  • Cull MG, Schatz PJ (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol 326:430–440

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147:3241–3247

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita E, Kinoshita-Kikuta E, Koike T (2015) Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochim Biophys Acta 1854:601–608

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita-Kikuta E, Kinoshita E, Yamada A, Endo M, Koike T (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Ho Y, Hsu CM (2003) Molecular simulations to determine the chelating mechanisms of various metal ions to the His-tag motif: a preliminary study. J Biomol Struct Dyn 21:31–41

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Queffélec C, Charlier C, Defontaine A, Fateh A, Tellier C, Talham DR, Bujoli B (2014) Design and optimization of a phosphopeptide anchor for specific immobilization of a capture protein on zirconium phosphonate modified supports. Langmuir 30:13949–13955

    Article  CAS  PubMed  Google Scholar 

  • Machida M, Kosako H, Shirakabe K, Kobayashi M (2007) Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J 274:1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  CAS  PubMed  Google Scholar 

  • Monot J, Petit M, Lane SM, Guisle I, Léger J, Tellier C, Talham DR, Bujoli B (2008) Towards zirconium phosphonate-based microarrays for probing DNA-protein interactions: critical influence of the location of the probe anchoring groups. J Am Chem Soc 130:6243–6251

    Article  CAS  PubMed  Google Scholar 

  • Nonglaton G, Benitez IO, Guisle I, Pipelier M, Leger J, Dubreuil D, Tellier C, Talham DR, Bujoli B (2004) New approach to oligonucleotide microarrays using zirconium phosphonate-modified surfaces. J Am Chem Soc 126:1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Scheich C, Kümmel D, Soumailakakis D, Heinemann U, Büssow K (2007) Vectors for co-expression of an unrestricted number of proteins. Nucleic Acid Res 35:e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Studier FW (2006) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  Google Scholar 

  • Tsai C, Wang Y, Chen Y, Lai C, Lin P, Pan K, Chen J, Khoo K, Chen Y (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics research articles. J Proteom Res 7:4058–4069

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.G. was supported by the “Region Pays de la Loire” within the framework of the Erasmus Mundus Program “NanoFar”.

Supporting information

Supplementary Fig. 1—Sequences of Nanofitins H4P and H4P′.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Tellier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goux, M., Fateh, A., Defontaine, A. et al. In vivo phosphorylation of a peptide tag for protein purification. Biotechnol Lett 38, 767–772 (2016). https://doi.org/10.1007/s10529-016-2040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2040-4

Keywords

Navigation