Skip to main content

Site-Specific Phosphorylation of PDZ Domains

  • Protocol
  • First Online:
Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

Classical approaches for probing protein phosphorylation events rely on phosphomimicking amino acids or enzymatic phosphorylation of proteins. In many cases, phosphomimicking amino acids inadequately imitate actual protein phosphorylation, whereas the latter method suffers from an inability to control site specificity and stoichiometry. To circumvent these shortcomings, chemical biological approaches have been developed to enable introduction of phosphorylated amino acids into proteins in a reliable and controlled way. Here, we describe methods to make semisynthetic, phosphorylated PDZ domains, covering expressed protein ligation (EPL) strategies involving modifications within the N-terminal or C-terminal regions. We also enclose protocols for the biophysical characterization of the semisynthetic phosphorylated PDZ domains to establish whether the introduced phosphorylation affects protein structure, stability, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3:177–186

    Article  CAS  Google Scholar 

  2. Cohen P (2000) The regulation of protein function by multisite phosphorylation. Trends Biochem Sci 25:596–601

    Article  CAS  Google Scholar 

  3. Yaffe MB, Elia AE (2001) Phosphoserine/threonine-binding domains. Curr Opin Cell Biol 13:131–138

    Article  CAS  Google Scholar 

  4. Lu W, Gong D, Bar-Sagi D, Cole PA (2001) Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signalling. Mol Cell 8:759–769

    Article  CAS  Google Scholar 

  5. Ottesen JJ, Huse M, Sekedat MD, Muir TW (2004) Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated TGF beta RI kinase. Biochemistry 43:5698–5706

    Article  CAS  Google Scholar 

  6. Pedersen S, Albertsen L, Moran G, Levesque B, Pedersen S, Bartels L et al (2017) Site-specific phosphorylation of PSD-95 PDZ domains reveals fine-tuned regulation of protein–protein interactions. ACS Chem Biol 12:2313–2323

    Article  CAS  Google Scholar 

  7. Mandal P, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle J et al (2011) Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54:3549–3563

    Article  CAS  Google Scholar 

  8. Cohen P, Alessi D (2012) Kinase drug discovery – what’s next in the field? ACS Chem Biol 8:96–104

    Article  Google Scholar 

  9. Ferguson F, Gray N (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discovery 17:353–377

    Article  CAS  Google Scholar 

  10. Wu P, Nielsen T, Clausen M (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today 21:5–10

    Article  CAS  Google Scholar 

  11. Rogerson D, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock S et al (2015) Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 11:496–503

    Article  CAS  Google Scholar 

  12. Luo X, Fu G, Wang R, Zhu X, Zambaldo C, Liu R et al (2017) Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol 13:845–849

    Article  CAS  Google Scholar 

  13. Zhang M, Brunner S, Huguenin-Dezot N, Liang A, Schmied W, Rogerson D, Chin J (2017) Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat Methods 14:729–736

    Article  CAS  Google Scholar 

  14. Chu N, Salguero A, Liu A, Chen Z, Dempsey D, Ficarro S et al (2018) Akt kinase activation mechanisms revealed using protein semisynthesis. Cell 174:897–907.e14

    Article  CAS  Google Scholar 

  15. Ansaloni A, Wang Z, Jeong J, Ruggeri F, Dietler G, Lashuel H (2014) One-pot semisynthesis of Exon 1 of the Huntingtin protein: new tools for elucidating the role of posttranslational modifications in the pathogenesis of huntington’s disease. Angewandte Chemie Int Edition 53:1928–1933

    Article  CAS  Google Scholar 

  16. Canne L, Bark S, Kent S (1996) Extending the applicability of native chemical ligation. J Am Chem Soc 118:5891–5896

    Article  CAS  Google Scholar 

  17. Nilsson B, Kiessling L, Raines R (2001) High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. Organ Lett 3:9–12

    Article  CAS  Google Scholar 

  18. Yan L, Dawson P (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    Article  CAS  Google Scholar 

  19. Pedersen S, Pedersen S, Anker L, Hultqvist G, Kristensen A, Jemth P, Strømgaard K (2014) Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations. Nat Commun 5:3215

    Article  Google Scholar 

  20. Pedersen S, Armishaw C, Strømgaard K (2013) Synthesis of peptides using Tert-Butyloxycarbonyl (Boc) as the α-Amino protection group. Meth Mol Biol 1047:65–80

    Article  CAS  Google Scholar 

  21. Mende F, Seitz O (2010) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angewandte Chemie Int Edition 50:1232–1240

    Article  Google Scholar 

  22. Kelly S, Price N (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Peptide Sci 1:349–384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Danish Council for Independent Research, Medical Sciences to S.W.P. (4092-00402B), EU Horizon 2020 RIA under the Marie Skłodowska-Curie grant agreement No. 675341, and Agnes and Poul Friis Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise S. Clemmensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, S., Strømgaard, K., Clemmensen, L.S. (2020). Site-Specific Phosphorylation of PDZ Domains. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics