Skip to main content
Log in

Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A phosphorylatable tag was designed and fused at the C-terminal end of proteins, which allowed efficient and oriented immobilization of capture proteins on glass substrates coated with a zirconium phosphonate monolayer. The concept is demonstrated using Nanofitin directed against lysozyme. This peptide tag (DSDSSSEDE) contains four serines in an acidic environment, which favored its in vitro phosphorylation by casein kinase II. The resulting phosphate cluster at the C-terminal end of the protein provided a specific, irreversible, and multipoint attachment to the zirconium surface. In a microarray format, the high surface coverage led to high fluorescence signal after incubation with Alexa Fluor 647 labeled lysozyme. The detection sensitivity of the microarray for the labeled target was below 50 pM, owing to the exceptionally low background staining, which resulted in high fluorescence signal to noise ratios. The performance of this new anchoring strategy using a zirconium phosphonate modified surface compares favorably with that of other types of microarray substrates, such as nitrocellulose-based or epoxide slides, which bind proteins in a nonoriented way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou HH, Roy S, Schulman H, Natan MJ (2001) Trends Biotechnol 19:S34–S39

    Article  PubMed  CAS  Google Scholar 

  2. Feng YF, Ke X, Ma RS, Chen P, Hu GG, Liu FZ (2004) Clin Chem 50:416–422

    Article  PubMed  CAS  Google Scholar 

  3. Cooper MA (2002) Nat Rev Drug Discov 1:515–528

    Article  PubMed  CAS  Google Scholar 

  4. Zhu H, Bilgin M, Snyder M (2003) Annu Rev Biochem 72:783–812

    Article  PubMed  CAS  Google Scholar 

  5. Brody EN, Gold L (2000) J Biotechnol 74:5–13

    PubMed  CAS  Google Scholar 

  6. Nygren PA, Skerra A (2004) J Immunol Methods 290:3–28

    Article  PubMed  CAS  Google Scholar 

  7. Porath J (1988) Trends Anal Chem 7:254–259

    Article  CAS  Google Scholar 

  8. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Nature 258:598–599

    Article  PubMed  CAS  Google Scholar 

  9. Sulkowski E (1985) Trends Biotechnol 3:1–7

    Article  CAS  Google Scholar 

  10. Lata S, Reichel A, Brock R, Tampe R, Piehler J (2005) J Am Chem Soc 127:10205–10215

    Article  PubMed  CAS  Google Scholar 

  11. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Science 293:2101–2105

    Article  PubMed  CAS  Google Scholar 

  12. Kroger D, Liley M, Schiweck W, Skerra A, Vogel H (1999) Biosens Bioelectron 14:155–161

    Article  PubMed  CAS  Google Scholar 

  13. Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM (1996) Anal Chem 68:490–497

    Article  PubMed  CAS  Google Scholar 

  14. Lata S, Piehler J (2005) Anal Chem 77:1096–1105

    Article  PubMed  CAS  Google Scholar 

  15. Cinier M, Petit M, Williams MN, Fabre RM, Pecorari F, Talham DR, Bujoli B, Tellier C (2009) Bioconjug Chem 20:2270–2277

    Article  PubMed  CAS  Google Scholar 

  16. Tinazli A, Piehler J, Beuttler M, Guckenberger R, Tampe R (2007) Nat Nanotechnol 2:220–225

    Article  PubMed  CAS  Google Scholar 

  17. Stensballe A, Andersen S, Jensen ON (2001) Proteomics 1:207–222

    Article  PubMed  CAS  Google Scholar 

  18. Posewitz MC, Tempst P (1999) Anal Chem 71:2883–2892

    Article  PubMed  CAS  Google Scholar 

  19. Zhou HJ, Ye ML, Dong J, Han GH, Jiang XN, Wu RN, Zou HF (2008) J Proteome Res 7:3957–3967

    Article  PubMed  CAS  Google Scholar 

  20. Zhou HJ, Xu SY, Ye ML, Feng S, Pan C, Jiang XG, Li X, Han GH, Fu Y, Zou H (2006) J Proteome Res 5:2431–2437

    Article  PubMed  CAS  Google Scholar 

  21. Thingholm TE, Jensen ON, Larsen MR (2009) Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  22. Nonglaton G, Benitez IO, Guisle I, Pipelier M, Leger J, Dubreuil D, Tellier C, Talham DR, Bujoli B (2004) J Am Chem Soc 126:1497–1502

    Article  PubMed  CAS  Google Scholar 

  23. Lane SM, Monot J, Petit M, Tellier C, Bujoli B, Talham DR (2008) Langmuir 24:7394–7399

    Article  PubMed  CAS  Google Scholar 

  24. Mouratou B, Schaeffer F, Guilvout I, Tello-Manigne D, Pugsley AP, Alzari PM, Pecorari F (2007) Proc Natl Acad Sci USA 104:17983–17988

    Article  PubMed  CAS  Google Scholar 

  25. Krehenbrink M, Chami M, Guilvout I, Alzari PM, Pecorari F, Pugsley AP (2008) J Mol Biol 383:1058–1068

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998) Nucleic Acids Res 26:3854–3861

    Article  PubMed  CAS  Google Scholar 

  27. Maoz R, Sagiv J (1984) J Colloid Interface Sci 100:465–496

    Article  CAS  Google Scholar 

  28. Byrd H, Pike JK, Talham DR (1993) Chem Mater 5:709–715

    Article  CAS  Google Scholar 

  29. Byrd H, Pike JK, Talham DR (1994) J Am Chem Soc 116:7903–7904

    Article  CAS  Google Scholar 

  30. Marin O, Meggio F, Draetta G, Pinna LA (1992) FEBS Lett 301:111–114

    Article  PubMed  CAS  Google Scholar 

  31. Meggio F, Pinna LA (2003) FASEB J 17:349–368

    Article  PubMed  CAS  Google Scholar 

  32. Dobrowolska G, Meggio F, Marin O, Lozeman FJ, Li DX, Pinna LA, Krebs EG (1994) FEBS Lett 355:237–241

    Article  PubMed  CAS  Google Scholar 

  33. Meggio F, Marchiori F, Borin G, Chessa G, Pinna LA (1984) J Biol Chem 259:4576–4579

    Google Scholar 

  34. Marin O, Meggio F, Marchiori F, Borin G, Pinna LA (1986) Eur J Biochem 160:239–244

    Article  PubMed  CAS  Google Scholar 

  35. Monot J, Petit M, Lane SM, Guisle I, Leger J, Tellier C, Talham DR, Bujoli B (2008) J Am Chem Soc 130:6243–6251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants (no. 04.04.025 and no. 2008.34.0010) from the Délégation Générale à l’Armement (DGA). M.C. was supported by a grant from the DGA. Partial support for this work was also provided by the US National Science Foundation Division of Chemistry under grant no. 0957155 (cofunded by the MPS/CHE and the Office of International Science and Engineering) (DRT). F.P. was supported by a grant from La Région des Pays de la Loire. Mass spectrometry analyses were performed within the BIBS platform located at the INRA Center of Angers-Nantes (INRA, UR1268 Biopolymères Interactions Assemblages, Nantes; http://www.angers-nantes.inra.fr/plateformes_et_plateaux_techniques/plateforme_bibs).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Bujoli or Charles Tellier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinier, M., Petit, M., Pecorari, F. et al. Engineering of a phosphorylatable tag for specific protein binding on zirconium phosphonate based microarrays. J Biol Inorg Chem 17, 399–407 (2012). https://doi.org/10.1007/s00775-011-0863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0863-y

Keywords

Navigation