Skip to main content
Log in

An EPR/HYSCORE, Mössbauer, and resonance Raman study of the hydrogenase maturation enzyme HydF: a model for N-coordination to [4Fe–4S] clusters

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The biosynthesis of the organometallic H cluster of [Fe–Fe] hydrogenase requires three accessory proteins, two of which (HydE and HydG) belong to the radical S-adenosylmethionine enzyme superfamily. The third, HydF, is an Fe–S protein with GTPase activity. The [4Fe–4S] cluster of HydF is bound to the polypeptide chain through only the three, conserved, cysteine residues present in the binding sequence motif CysXHisX(46-53)HisCysXXCys. However, the involvement of the two highly conserved histidines as a fourth ligand for the cluster coordination is controversial. In this study, we set out to characterize further the [4Fe–4S] cluster of HydF using Mössbauer, EPR, hyperfine sublevel correlation (HYSCORE), and resonance Raman spectroscopy in order to investigate the influence of nitrogen ligands on the spectroscopic properties of [4Fe–4S]2+/+ clusters. Our results show that Mössbauer, resonance Raman, and EPR spectroscopy are not able to readily discriminate between the imidazole-coordinated [4Fe–4S] cluster and the non-imidazole-bound [4Fe–4S] cluster with an exchangeable fourth ligand that is present in wild-type HydF. HYSCORE spectroscopy, on the other hand, detects the presence of an imidazole/histidine ligand on the cluster on the basis of the appearance of a specific spectral pattern in the strongly coupled region, with a coupling constant of approximately 6 MHz. We also discovered that a His-tagged version of HydF, with a hexahistidine tag at the N-terminus, has a [4Fe–4S] cluster coordinated by one histidine from the tag. This observation strongly indicates that care has to be taken in the analysis of data obtained on tagged forms of metalloproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rothery RA, Bertero MG, Cammack R, Palak M, Blasco F, Strynadka NCJ, Weiner JH (2004) Biochemistry 43:5324–5333

    Article  CAS  PubMed  Google Scholar 

  2. Ohnishi T, Nakamaru-Ogiso E (2008) Biochim Biophys Acta 1777:703–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecillacamps JC (1995) Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  4. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  5. Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Munck E (1985) J Biol Chem 260:1160–1173

    Google Scholar 

  6. Conover RC, Kowal AT, Fu W, Park JB, Aono S, Adams MWW, Johnson MK (1990) J Biol Chem 265:8533–8541

    CAS  PubMed  Google Scholar 

  7. Gurbiel RJ, Doan PE, Gassner GT, Macke TJ, Case DA, Ohnishi T, Fee JA, Ballou DP, Hoffman BM (1996) Biochemistry 35:7834–7845

    Article  CAS  PubMed  Google Scholar 

  8. Gurbiel RJ, Ohnishi T, Robertson DE, Daldal F, Hoffman BM (1991) Biochemistry 30:11579–11584

    Article  CAS  PubMed  Google Scholar 

  9. Gurbiel RJ, Batie CJ, Sivaraja M, True AE, Fee JA, Hoffman BM, Ballou DP (1989) Biochemistry 28:4861–4871

    Article  CAS  PubMed  Google Scholar 

  10. Dicus MM, Conlan A, Nechushtai R, Jennings PA, Paddock ML, Britt RD, Stoll S (2010) J Am Chem Soc 132:2037–2049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li HR, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) Biochemistry 48:9569–9581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Messick TE, Chmiel NH, Golinelli MP, Langer MR, Joshua-Tor L, David SS (2002) Biochemistry 41:3931–3942

    Article  CAS  PubMed  Google Scholar 

  13. Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De Lacey AL, Fernandez VM, Rousset M, Leger C (2006) J Am Chem Soc 128:5209–5218

    Article  CAS  PubMed  Google Scholar 

  14. Brazzolotto X, Rubach JK, Gaillard J, Gambarelli S, Atta M, Fontecave M (2006) J Biol Chem 281:769–774

    Article  CAS  PubMed  Google Scholar 

  15. Fish WW (1988) Methods Enzymol 158:357–364

    CAS  PubMed  Google Scholar 

  16. Beinert H (1983) Anal Biochem 131:373–378

    Article  CAS  PubMed  Google Scholar 

  17. Aasa R, Vanngard T (1975) J Magn Reson 19:308–315

    CAS  Google Scholar 

  18. Tyryshkin AM, Dikanov SA, Reijerse EJ, Burgard C, Huttermann J (1999) J Am Chem Soc 121:3396–3406

    Article  CAS  Google Scholar 

  19. Drozdzewski PM, Johnson MK (1988) Appl Spectrosc 42:1575–1577

    Article  CAS  Google Scholar 

  20. Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M (2011) FEBS Lett 585:225–230

    Article  CAS  PubMed  Google Scholar 

  21. Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Proc Natl Acad Sci USA 107:10448–10453

    Article  CAS  PubMed  Google Scholar 

  22. Kuchenreuther JM, Britt RD, Swartz JR (2012) PLoS ONE 7:e45850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wang WX, Li JK, Wang K, Smirnova TI, Oldfield E (2011) J Am Chem Soc 133:6525–6528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chandor A, Douki T, Gasparutto D, Gambarelli S, Sanakis Y, Nicolet Y, Ollagnier-De-Choudens S, Atta M, Fontecave M (2007) C R Chim 10:756–765

    Article  CAS  Google Scholar 

  25. Gambarelli S, Luttringer F, Padovani D, Mulliez E, Fontecave M (2005) Chembiochem 6:1960–1962

    Article  CAS  PubMed  Google Scholar 

  26. Perche-Letuvee P, Kathirvelu V, Berggren G, Clemancey M, Latour JM, Maurel V, Douki T, Armengaud J, Mulliez E, Fontecave M, Garcia-Serres R, Gambarelli S, Atta M (2012) J Biol Chem 287:41174–41185

    Article  CAS  PubMed  Google Scholar 

  27. Cammack R, Dickson DPE, Johnson CE (1977) In: Lovenberg W (ed) Iron–sulfur proteins. Academic, New York, pp 283–330

    Google Scholar 

  28. Middleton P, Dickson DPE, Johnson CE, Rush JD (1978) Eur J Biochem 88:135–141

    Article  CAS  PubMed  Google Scholar 

  29. Moulis JM, Davasse V, Golinelli MP, Meyer J, Quinkal I (1996) J Biol Inorg Chem 1:2–14

    Article  CAS  Google Scholar 

  30. Meyer J, Fujinaga J, Gaillard J, Lutz M (1994) Biochemistry 33:13642–13650

    Article  CAS  PubMed  Google Scholar 

  31. Brereton PS, Duderstadt RE, Staples CR, Jonhson MK, Adams MWW (1999) Biochemistry 38:10594–10605

    Article  CAS  PubMed  Google Scholar 

  32. Kuila D, Schoonover JR, Dyer RB, Batie CJ, Ballou DP, Fee JA, Woodruff WH (1992) Biochim Biophys Acta 1140:175–183

    Article  CAS  PubMed  Google Scholar 

  33. Tirrell TF, Paddock ML, Conlan AR, Smoll EJ, Nechushtai R, Jennings PA, Kim JE (2009) Biochemistry 48:4747–4752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Czernuszewicz RS, Macor KA, Johnson MK, Gewirth A, Spiro TG (1987) J Am Chem Soc 109:7178–7187

    Article  CAS  Google Scholar 

  35. Joshi N, Shepard EM, Byer AS, Swanson KD, Broderick JB, Peters JW (2012) FEBS Lett 586:3939–3943

    Article  CAS  PubMed  Google Scholar 

  36. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Nature 499:66–69

    Article  CAS  PubMed  Google Scholar 

  37. Berto P, Di Valentin M, Cendron L, Vallese F, Albertini M, Salvadori E, Giacometti GM, Carbonera D, Costantini P (2012) Biochim Biophys Acta 1817:2149–2157

    Article  CAS  PubMed  Google Scholar 

  38. Lees NS, Hanzelmann P, Hernandez HL, Subramanian S, Schindelin H, Johnson MK, Hoffman BM (2009) J Am Chem Soc 131:9184–9185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

G.B. gratefully acknowledges support from the Bengt Lundqvist Minnesfond, FORMAS (contract number 213-2010-563), and the Swedish Royal Academy of Sciences. EPR and resonance Raman studies were supported by a grant from the National Institutes of Health (GM62524 to M.K.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fontecave.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berggren, G., Garcia-Serres, R., Brazzolotto, X. et al. An EPR/HYSCORE, Mössbauer, and resonance Raman study of the hydrogenase maturation enzyme HydF: a model for N-coordination to [4Fe–4S] clusters. J Biol Inorg Chem 19, 75–84 (2014). https://doi.org/10.1007/s00775-013-1062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1062-9

Keywords

Navigation