Skip to main content
Log in

Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The ability to transform chloroplasts in multiple species is important for improving agricultural traits. Chloroplast transformation of alfalfa (Medicago sativa L.), a useful forage plant with high market value, was achieved using a vector carrying aadA and gfp genes being introduced into the chloroplasts of alfalfa via particle bombardment using leaves and calli as explants. Resistant somatic embryos were generated and developed into plantlets from explants. The transformation efficiency was 1.3% for callus explants and 2.7% for leaf explants. PCR and Southern blotting analyses revealed that the foreign genes were integrated into the transformed chloroplast genome. The occurrence of GFP was further confirmed by fluorescence microscopy. Expression of foreign genes in alfalfa chloroplasts is therefore possible, and provides a novel means for genetic improvement of agronomically important traits and production of value-added proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988) Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 7:512–516

    Article  CAS  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot 75:1443–1458

    Article  Google Scholar 

  • Cui C, Song F, Tan Y, Zhou X, Zhao W, Ma F, Liu Y, Hussain J, Wang Y, Yang G, He G (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim Biophys Sin 43:284–291

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, Vierstra RD (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3:43–48

    CAS  Google Scholar 

  • Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528

    Article  PubMed  CAS  Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5:97–100

    Article  CAS  Google Scholar 

  • Du S, Erickson L, Bowley S (1994) Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens. Plant Cell Rep 13:330–334

    Article  CAS  Google Scholar 

  • Fitter JT, Rose RJ (1993) Investigation of chloroplast DNA heteroplasmy in Medicago sativa L. using cultured tissue. Theor Appl Genet 86:65–70

    Article  CAS  Google Scholar 

  • Fitter JT, Thomas MR, Rose RJ, Steele-Scott N (1996) Heteroplasmy of the chloroplast genome of Medicago sativa L. cv ‘Regen S’ confirmed by sequence analyses. Theor Appl Genet 93:685–690

    Article  CAS  Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis of rDNA-dependent spectinomycin resistance in Nicotiana chloroplast. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of chlamydomonas. Nucl Acids Res 19:4083–4089

    Article  PubMed  CAS  Google Scholar 

  • Johnson LB, Palmer JD (1989) Heteroplasmy of chloroplast DNA in Medicago. Plant Mol Bio 12:3–11

    Article  CAS  Google Scholar 

  • Khan M, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Kittiwongwattana C, Lutz K, Clark M, Maliga P (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 4:137–143

    Article  Google Scholar 

  • Kuchuk N, Komaritski A, Gleba Y (1990) Genetic transformation of Medicago species by Agrobacterium tumefaciens and electroporation of protoplasts. Plant Cell Rep 8:660–663

    Article  CAS  Google Scholar 

  • Lee DJ, Blake TK, Smith SE (1988) Biparental inheritance of chloroplast DNA and the existence of heteroplasmic cells in alfalfa. Theor Appl Genet 76:545–549

    Article  CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Liu CW, Lin CC, Chen JJW, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsushima R, Hu YC, Sodmergen KT, Sakamoto W (2008) The model plant Medicago truncatula exhibits biparental plastid inheritance. Plant Cell Physiol 49:81–91

    Article  PubMed  CAS  Google Scholar 

  • Monteiro M, Appezzato-da-Glória B, Valarini MJ, Oliveira CA, Vieira MLC (2003) Plant regeneration from protoplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Sci Agricola 60:683–689

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322

    Article  PubMed  CAS  Google Scholar 

  • Schumann CM, Hancock JF (1989) Paternal inheritance of plastids in Medicago sativa. Theor Appl Genet 78:863–866

    Article  CAS  Google Scholar 

  • Smith SE (1989) Influence of parental genotype on plastid inheritance in Medicago sativa. J Hered 80:214–217

    PubMed  CAS  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confer resistance to spectinomycin. Mol Gen Genet 228:316–319

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Harper EC, Jones JDG, Maliga P (1990) Aminoglycoside-3′-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol 14:197–205

    Article  PubMed  CAS  Google Scholar 

  • Yang SM, Gao MQ, Xu CW, Gao JC, Deshpande S, Lin SP, Roe BA, Zhu HY (2008) Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci USA 105:12164–12169

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Science and Technology Developmental Program (No. 20076021) and Postdoctoral Grant of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaochen Xing.

Additional information

Zhengyi Wei and Yanzhi Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Liu, Y., Lin, C. et al. Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 33, 2487–2494 (2011). https://doi.org/10.1007/s10529-011-0709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0709-2

Keywords

Navigation