Skip to main content

Advertisement

Log in

Molecular engineering of the cellulosome complex for affinity and bioenergy applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The cellulosome complex has evolved to degrade plant cell walls and, as such, combines tenacious binding to cellulose with diverse catalytic activities against amorphous and crystalline cellulose. Cellulolytic microorganisms provide an extensive selection of domains; those with affinity for cellulose, cohesins and their dockerin binding partners that define cellulosome stoichiometry and architecture, and a range of catalytic activities against carbohydrates. These robust domains provide the building blocks for molecular design. This review examines how protein modules derived from the cellulosome have been incorporated into chimaeric proteins to provide biosynthetic tools for research and industry. These applications include affinity tags for protein purification, and non-chemical methods for immobilisation and presentation of recombinant protein domains on cellulosic substrates. Cellulosomal architecture provides a paradigm for design of enzymatic complexes that synergistically combine multiple catalytic subunits to achieve higher specific activity than would be obtained using free enzymes. Multimeric enzymatic complexes may have industrial applications of relevance for an emerging carbon economy. Biocatalysis will lead to more efficient utilisation of renewable carbon-fixing energy sources with the added benefits of reducing chemical waste streams and reliance on petroleum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JJ, Webb BA, Spencer HL et al (2005) Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 44:2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Alber O, Noach I, Lamed R et al (2008) Preliminary X-ray characterization of a novel type of anchoring cohesin from the cellulosome of Ruminococcus flavefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:77–80

    Article  PubMed  Google Scholar 

  • Azriel-Rosenfeld R, Valensi M, Benhar I (2004) A human synthetic combinatorial library of arrayable dingle-chain antibodies based on shuffling in vivo formed CDRs into general framework regions. J Mol Biol 335:177–192

    Article  PubMed  CAS  Google Scholar 

  • Barak Y, Handelsman T, Nakar D et al (2005) Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin–dockerin interaction. J Mol Recognit 18:491–501

    Article  PubMed  CAS  Google Scholar 

  • Baratieri M, Baggio P, Fiori L et al (2008) Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol 99:7063–7073

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12:379–386

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y et al (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  PubMed  CAS  Google Scholar 

  • Blouzard J-C, Bourgeois C, de Philip P et al (2007) Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: identification of seven genes encoding new dockerin-containing proteins. J Bacteriol 189:2300–2309

    Article  PubMed  CAS  Google Scholar 

  • Bolam DN, Ciruela A, McQueen-Mason S et al (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331:775–781

    PubMed  CAS  Google Scholar 

  • Boraston AB, Creagh AL, Alam MM et al (2001) Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A. Biochemistry 40:6240–6247

    Article  PubMed  CAS  Google Scholar 

  • Boraston AB, Nurizzo D, Notenboom V et al (2002) Differential oligosaccharide recognition by evolutionarily-related beta-1, 4 and beta-1, 3 glucan-binding modules. J Mol Biol 319:1143–1156

    Article  PubMed  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ et al (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  PubMed  CAS  Google Scholar 

  • Bruce ER (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  Google Scholar 

  • Carrard G, Koivula A, Soderlund H et al (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci USA 97:10342–10347

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AL, Dias FM, Prates JA et al (2003) Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proc Natl Acad Sci USA 100:13809–13814

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AL, Dias FMV, Nagy T et al (2007) Evidence for a dual binding mode of dockerin modules to cohesins. Proc Natl Acad Sci USA 104:3089–3094

    Article  PubMed  CAS  Google Scholar 

  • Cha J, Matsuoka S, Chan H et al (2007) Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes. J Microbiol Biotechnol 17:1782–1788

    PubMed  CAS  Google Scholar 

  • Cho H-Y, Yukawa H, Inui M et al (2004) Production of Minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol 70:5704–5707

    Article  PubMed  CAS  Google Scholar 

  • Craig SJ, Foong FC, Nordon RE (2006) Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. J Biotechnol 121:165–173

    Article  PubMed  CAS  Google Scholar 

  • Craig SJ, Shu A, Xu Y et al (2007) Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 20:235–241

    Article  PubMed  CAS  Google Scholar 

  • Ding SY, Rincon MT, Lamed R et al (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945–1953

    Article  PubMed  CAS  Google Scholar 

  • EU (2006) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels and other renewable fuels for transport Institution. City Document

  • Fierobe H-P, Bayer EA, Tardif C et al (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277:49621–49630

    Article  PubMed  CAS  Google Scholar 

  • Fierobe H-P, Mingardon F, Mechaly A et al (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 280:16325–16334

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M et al (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    PubMed  CAS  Google Scholar 

  • Ha J-S, Lee Y-M, Choi S-L et al (2008) Thermostable beta-glycosidase-CBD fusion protein for biochemical analysis of cotton scouring efficiency. J Microbiol Biotechnol 18:443–448

    PubMed  Google Scholar 

  • Hahn-Hagerdal B, Wahlbom CF, Gardonyi M et al (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  CAS  Google Scholar 

  • Haimovitz R, Barak Y, Morag E et al (2008) Cohesin–dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979

    Article  PubMed  CAS  Google Scholar 

  • Hammel M, Fierobe H-P, Czjzek M et al (2005) Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280:38562–38568

    Article  PubMed  CAS  Google Scholar 

  • Harhangi HR, Freelove ACJ, Ubhayasekera W et al (2003) Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochim Biophys Acta/Gene Struct Expression 1628:30–39

    CAS  Google Scholar 

  • Harry JG (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63:1568–1576

    Article  Google Scholar 

  • Henrissat B, Coutinho PM, Danchin E et al (2008) Carbohydrate-active enzymes database. Retrieved August 2008, from http://www.cazy.org

  • Heyman A, Barak Y, Caspi J et al (2007) Multiple display of catalytic modules on a protein scaffold: nano-fabrication of enzyme particles. J Biotechnol 131:433–439

    Article  PubMed  CAS  Google Scholar 

  • Hildén L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1693

    Article  PubMed  Google Scholar 

  • Hong SY, Lee JS, Cho KM et al (2006) Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Ye X, Zhang YHP (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540

    Article  PubMed  CAS  Google Scholar 

  • Hsu S-h, Chu W-P, Lin Y-S et al (2004) The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion. J Biotechnol 111:143–154

    Article  PubMed  CAS  Google Scholar 

  • Hwang S, Ahn J, Lee S et al (2004) Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization. Biotechnol Lett 26:603–605

    Article  PubMed  CAS  Google Scholar 

  • Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272:24016–24023

    Article  PubMed  CAS  Google Scholar 

  • Jervis EJ, Guarna MM, Doheny JG et al (2005) Dynamic localization and persistent stimulation of factor-dependent cells by a stem cell factor/cellulose binding domain fusion protein. Biotechnol Bioeng 91:314–324

    Article  PubMed  CAS  Google Scholar 

  • Kang H-J, Uegaki K, Fukada H et al (2007) Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11:251–256

    Article  PubMed  CAS  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H et al (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Kavoosi M, Meijer J, Kwan E et al (2004) Inexpensive one-step purification of polypeptides expressed in Escherichia coli as fusions with the family 9 carbohydrate-binding module of xylanase 10A from T. maritima. J Chromatogr B 807:87–94

    Article  CAS  Google Scholar 

  • Kavoosi M, Lam D, Bryan J et al (2007) Mechanically stable porous cellulose media for affinity purification of family 9 cellulose-binding module-tagged fusion proteins. J Chromatogr A 1175:187–196

    Article  PubMed  CAS  Google Scholar 

  • Kumar GA, Sekaran G, Krishnamoorthy S (2006) Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour Technol 97:1521–1528

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh O (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol 35:377–391

    Article  CAS  Google Scholar 

  • Kwan M, Guarna M, Boraston AB et al (2002) Self-activating factor X derivative fused to the C-terminus of a cellulose-binding module: production and properties. Biotechnol Bioeng 79:724–732

    Article  PubMed  CAS  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    PubMed  CAS  Google Scholar 

  • Lehtio J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  PubMed  CAS  Google Scholar 

  • Levy I, Paldi T, Shoseyov O (2004) Engineering a bifunctional starch-cellulose cross-bridge protein. Biomaterials 25:1841–1849

    Article  PubMed  CAS  Google Scholar 

  • Linde M, Galbe M, Zacchi G (2008) Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Bioresour Technol 99:6505–6511

    Article  PubMed  CAS  Google Scholar 

  • Madkour M, Mayer F (2003) Structural organization of the intact bacterial cellulosome as revealed by electron microscopy. Cell Biol Int 27:831–836

    Article  PubMed  CAS  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31:3362–3380

    Article  Google Scholar 

  • Maurice S, Dekel M, Shoseyov O et al (2003) Cellulose beads bound to cellulose binding domain-fused recombinant proteins; an adjuvant system for parenteral vaccination of fish. Vaccine 21:3200–3207

    Article  PubMed  CAS  Google Scholar 

  • McAloon A, Taylor F, Yee W et al (2000) Determining the cost of producing ethanol from corn starch and lignocellulose feedstocks. National Renewable Energy Laboratory, U.S. Department of Energy, Denver, Colorado, pp 1–15 (NREL/TP-580-28893)

    Google Scholar 

  • McLean BW, Bray MR, Boraston AB et al (2000) Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 13:801–809

    Article  PubMed  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng/Biotechnol 108:95–120

    Article  CAS  Google Scholar 

  • Mingardon F, Chanal A, Lopez-Contreras AM et al (2007a) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  PubMed  CAS  Google Scholar 

  • Mingardon F, Chanal A, Tardif C et al (2007b) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Murashima K, Chen C-L, Kosugi A et al (2002) Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes. J Bacteriol 184:76–81

    Article  PubMed  CAS  Google Scholar 

  • Nagy T, Simpson P, Williamson MP et al (1998) All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 429:312–316

    Article  PubMed  CAS  Google Scholar 

  • Nahálka J, Gemeiner P (2006) Thermoswitched immobilization—a novel approach in reversible immobilization. J Biotechnol 123:478–482

    Article  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H et al (2003) Crystal structure and hydrogen bonding system in cellulose; from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  PubMed  CAS  Google Scholar 

  • Nordon RE, Shu A, Camacho F, Milthorpe BK (2004) Hollow fiber assay for ligand-mediated cell adhesion. Cytometry 57A:39–44

    Article  CAS  Google Scholar 

  • Ong E, Alimonti JB, Greenwood JM et al (1995) Purification of human interleukin-2 using the cellulose-binding domain of a prokaryotic cellulase. Bioseparation 5:95–104

    PubMed  CAS  Google Scholar 

  • Otero JM, Panagiotou G, Olsson L (2007) Fueling industrial biotechnology growth with bioethanol. Adv Biochem Eng/Biotechnol 108:1–40

    Article  CAS  Google Scholar 

  • Pangu G, Johnston E, Petkov J et al (2007) Targeted particulate adhesion to cellulose surfaces mediated by bifunctional fusion proteins. Langmuir 23:10682–10693

    Article  PubMed  CAS  Google Scholar 

  • Pell G, Williamson MP, Walters C et al (2003) Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42:9316–9323

    Article  PubMed  CAS  Google Scholar 

  • Perret S, Belaich A, Fierobe H-P et al (2004a) Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol 186:6544–6552

    Article  PubMed  CAS  Google Scholar 

  • Perret S, Casalot L, Fierobe HP et al (2004b) Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol 186:253–257

    Article  PubMed  CAS  Google Scholar 

  • Qi M, O’Brien JP, Yang J (2008) A recombinant triblock protein polymer with dispersant and binding properties for digital printing. Peptide Sci 90:28–36

    CAS  Google Scholar 

  • Sabathe F, Soucaille P (2003) Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 185:1092–1096

    Article  PubMed  CAS  Google Scholar 

  • Sakon J, Irwin D, Wilson DB et al (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer F, Matuschek M, Guglielmi G et al (2002) Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41:2106–2114

    Article  PubMed  CAS  Google Scholar 

  • Shapouri HDJ, Wang M (2001) The energy balance of corn ethanol: an update. Department of Agriculture, USA. Washington, DC, pp 1–15

    Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    Article  PubMed  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Tardif C, Belaıch A, Fierobe HP et al (2006) Cellulosomes and cellulolysis. In: Kataeva I, Uversky VN (eds) The cellulosome. Nova Sciences Publishers, Hauppauge, NY, pp 231–260

    Google Scholar 

  • Thormann K, Feustel L, Lorenz K et al (2002) Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 184:1966–1973

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Boraston A, McLean B et al (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B 715:283–296

    Article  CAS  Google Scholar 

  • von Ossowski I, Eaton JT, Czjzek M et al (2005) Protein disorder: conformational distribution of the flexible linker in a chimeric double cellulase. Biophys J 88:2823–2832

    Article  Google Scholar 

  • Wahlbom CF, van Zyl WH, Jonsson LJ et al (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2008) Cellulosic ethanol booms despite unproven business models. Nat Biotechnol 26:8–9

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Pelah D, Alergand T et al (2002) Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol 130:865–875

    Article  PubMed  CAS  Google Scholar 

  • Warren RA (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  PubMed  CAS  Google Scholar 

  • Watkins K (2007) Human Development Report 2007/2008. Fighting climate change. Human solidarity in a divided world. United Nations Development Programme, New York, pp 1–384

    Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Gao W, Ding SY et al (2003) The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185:4548–4557

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Miyamoto H, Yamane C et al (2007) Structure of regenerated cellulose films from cellulose/aqueous NaOH solution as a function of coagulation conditions. Polym J 39:34–40

    Article  CAS  Google Scholar 

  • Yeh M, Craig S, Lum M-G et al (2005) Effects of the PT region of EngD and HLD of CbpA on solubility, catalytic activity and purification characteristics of EngD-CBDCbpA fusions from Clostridium cellulovorans. J Biotechnol 116:233–244

    Article  PubMed  CAS  Google Scholar 

  • Zhang P (2006) Investigation of novel quantum dots/proteins/cellulose bioconjugate using NSOM and fluorescence. J Fluoresc 16:349–353

    Article  PubMed  CAS  Google Scholar 

  • Zverlov VV, Kellermann J, Schwarz WH (2005) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5:3646–3653

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Nordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordon, R.E., Craig, S.J. & Foong, F.C. Molecular engineering of the cellulosome complex for affinity and bioenergy applications. Biotechnol Lett 31, 465–476 (2009). https://doi.org/10.1007/s10529-008-9899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9899-7

Keywords

Navigation