Skip to main content
Log in

Comparative Analysis of DNA Methylation Polymorphism in Drought Sensitive (HPKC2) and Tolerant (HPK4) Genotypes of Horse Gram (Macrotyloma uniflorum)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    Article  Google Scholar 

  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285:1353–1361

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj J, Yadav SK (2012) Comparative study on biochemical parameters and antioxidant enzymes in a drought-tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. Am J Plant Physiol 7:17–29

    Article  CAS  Google Scholar 

  • Bolbhat SN, Dhumal KN (2009) Induced macromutations in horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. Legume Res 32:278–281

    Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  PubMed  CAS  Google Scholar 

  • Capitao C, Paiva JAP, Santos DM, Fevereiro P (2011) In Medicago truncatula, water deficit modulates the transcript accumulation of components of small RNA pathways. BMC Plant Biol 11:79

    Article  PubMed  CAS  Google Scholar 

  • Cervera M, Ruiz-García L, Martínez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  PubMed  CAS  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics 276:378–390

    Article  PubMed  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Stone JR, Williams AJ (2001) All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol 21:3609–3615

    Article  PubMed  CAS  Google Scholar 

  • Courtier B, Heard E, Avner P (1995) Xce haplotypes show modified methylation in a region of the active X chromosome lying 3′ to Xist. Proc Natl Acad Sci USA 92:3531–3535

    Article  PubMed  CAS  Google Scholar 

  • Dyban AP, Dyban PA (2006) Theoretical and applied aspects of epigenetic reprogramming in mammalian development. Russ J Genet 42:1362–1366

    Article  CAS  Google Scholar 

  • Fang JG, Chao CT (2006) Methylation-sensitive amplification polymorphism in date palms (Phoenix dactylifera L.) and their off-shoots. Plant Biol 9:526–533

    Article  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Sci USA 93:8449–8454

    Article  CAS  Google Scholar 

  • Jaligot E, Beul T, Baurens F, Billotte N, Rival A (2004) Search for methylation-sensitive amplification polymorphisms associated with the mantled variant phenotype in oil palm (Elaeis guineensis Jacq). Genome 47:224–228

    Article  PubMed  CAS  Google Scholar 

  • Keyte A, Percifield R, Liu B, Wendel J (2006) Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered 97:444–450

    Article  PubMed  CAS  Google Scholar 

  • Koukalova B, Fojtova M, Lim KY, Fulnecek J, Leitch AR, Kovarik A (2005) Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol 139:275–286

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Yu XM, Wang NN, Feng QZ, Dong ZY, Liu LX, Shen JL, Liu B (2007) Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin) Link). Plant Cell Tissue Organ C 90:153–168

    Article  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659

    Article  PubMed  CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 16:3985–3990

    Article  Google Scholar 

  • Platonov ES, Isaev DA (2006) Genomic imprinting in epigenetic of mammals. Russ J Genet 42:1030–1042

    Article  CAS  Google Scholar 

  • Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux M (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174:61–70

    Article  CAS  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    Article  PubMed  CAS  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78–87

    Article  PubMed  Google Scholar 

  • Sjakste NI, Sjakste TG (2007) Possible involvement of DNA breaks in epigenetic regulation of cell differentiation. Russ J Genet 43:467–484

    Article  CAS  Google Scholar 

  • Takeda S, Paszkowski J (2006) DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 115:27–35

    Article  PubMed  CAS  Google Scholar 

  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  PubMed  CAS  Google Scholar 

  • Tran R, Henikoff J, Zilberman D, Ditt R, Jacobsen S, Henikoff S (2005) DNA profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15:154–159

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2010) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot. doi:10.1093/jxb/erq391

    Google Scholar 

  • Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114:160–167

    Article  Google Scholar 

  • Xiao WY, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Xu C, Saghai-Maroof M, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Genet Genomics 261:439–446

    Article  CAS  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-IHBT, for his continuous encouragement and support. Dr. R. K. Chahota, Department of Plant Breeding and Genetics, CSK HPKV, Palampur, is duly acknowledged for providing horse gram seeds. This work was supported by grants from CSIR, GOI, to S. K. Yadav as a CSIR-YSA project (IHBT communication No. 3426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Additional information

J. Bhardwaj and M. Mahajan contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, J., Mahajan, M. & Yadav, S.K. Comparative Analysis of DNA Methylation Polymorphism in Drought Sensitive (HPKC2) and Tolerant (HPK4) Genotypes of Horse Gram (Macrotyloma uniflorum). Biochem Genet 51, 493–502 (2013). https://doi.org/10.1007/s10528-013-9580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9580-2

Keywords

Navigation