Skip to main content

Advertisement

Log in

Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achari AE, Jain SK (2017) Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 18(6):1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Almendáriz-Palacios C, Mousseau DD, Eskiw CH, Gillespie ZE (2020) Still living better through chemistry: an update on caloric restriction and caloric restriction mimetics as tools to promote health and lifespan. Int J Mol Sci 21(23):9220

    Article  PubMed  PubMed Central  Google Scholar 

  • Aso E, Ferrer I (2013) It may be possible to delay the onset of neurodegenerative diseases with an immunosuppressive drug (rapamycin). Expert Opin Biol Ther. 13(9):1215–9

    Article  CAS  PubMed  Google Scholar 

  • Atayik MC, Çakatay U (2022a) Melatonin-related signaling pathways and their regulatory effects in aging organisms. Biogerontology 23(5):529–539. https://doi.org/10.1007/s10522-022-09981-y

    Article  CAS  PubMed  Google Scholar 

  • Atayik MC, Çakatay U (2022b) Mitochondria-targeted senotherapeutic interventions. Biogerontology 23(4):401–423. https://doi.org/10.1007/s10522-022-09973-y

    Article  PubMed  Google Scholar 

  • Bae J, Kim N, Shin Y, Kim S-Y, Kim Y-J (2020) Activity of catechins and their applications. Biomed Dermatol 4(1):1–10

    Article  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865(5):721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  • Biel T, Lee S, Flores-Toro J, Dean J, Go K, Lee M, Law B, Law M, Dunn W, Zendejas I (2016) Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2-dependent manner. Cell Death Differ 23(2):279–290

    Article  CAS  PubMed  Google Scholar 

  • Bové J, Martínez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12(8):437–5

    Article  PubMed  Google Scholar 

  • Brand MD, Goncalves RL, Orr AL, Vargas L, Gerencser AA, Borch Jensen M, Wang YT, Melov S, Turk CN, Matzen JT, Dardov VJ, Petrassi HM, Meeusen SL, Perevoshchikova IV, Jasper H, Brookes PS, Ainscow EK (2016) Suppressors of superoxide-H(2)O(2) production at site I(Q) of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab 24(4):582–592. https://doi.org/10.1016/j.cmet.2016.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20(1):10–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacabelos R, Torrellas C (2016) Pharmacoepigenomics. Medical epigenetics. Elsevier, Amsterdam, pp 585–617

    Chapter  Google Scholar 

  • Castejon-Vega B, Cordero MD, Sanz A (2023) How the disruption of mitochondrial redox signalling contributes to ageing. Antioxidants (Basel). https://doi.org/10.3390/antiox12040831

    Article  PubMed  Google Scholar 

  • Chandrasekaran A, Idelchik M, Melendez JA (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102. https://doi.org/10.1016/j.redox.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Chang HY, Sang TK (2018) Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms19103082

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutation Res. 661(1–2):18–24

    Article  CAS  PubMed  Google Scholar 

  • Chuang J-Y, Chang P-C, Shen Y-C, Lin C, Tsai C-F, Chen J-H, Yeh W-L, Wu L-H, Lin H-Y, Liu Y-S (2014) Regulatory effects of fisetin on microglial activation. Molecules 19(7):8820–8839

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M (2020) Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 1(83):102083

    Article  Google Scholar 

  • Currais A, Farrokhi C, Dargusch R, Armando A, Quehenberger O, Schubert D, Maher P (2018) Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J Gerontol Ser A 73(3):299–307

    Article  CAS  Google Scholar 

  • Dağ AD, Yanar K, Atayik MC, Simsek B, Belce A, Çakatay U (2020) Early-adulthood caloric restriction is beneficial to improve renal redox status as future anti-aging strategy in rats. Arch Gerontol Geriatr 90:104116. https://doi.org/10.1016/j.archger.2020.104116

    Article  CAS  PubMed  Google Scholar 

  • Dash R, Emran TB, Uddin MM, Islam A, Junaid M (2014) Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins. Bioinformation 10(9):562

    Article  PubMed  PubMed Central  Google Scholar 

  • David AVA, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84

    Article  CAS  Google Scholar 

  • de Boer VC, de Goffau MC, Arts IC, Hollman PC, Keijer J (2006) SIRT1 stimulation by polyphenols is affected by their stability and metabolism. Mech Ageing Dev 127(7):618–627. https://doi.org/10.1016/j.mad.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci U S A 102(29):10070–10075. https://doi.org/10.1073/pnas.0502402102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg, T., Schroeder, S., Andryushkova, A., Pendl, T., Küttner, V., Bhukel, A., Mariño, G., Pietrocola, F., Harger, A., Zimmermann, A., Moustafa, T., Sprenger, A., Jany, E., Büttner, S., Carmona-Gutierrez, D., Ruckenstuhl, C., Ring, J., Reichelt, W., Schimmel, K., . . . Madeo, F. (2014). Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab, 19(3), 431–444. doi: https://doi.org/10.1016/j.cmet.2014.02.010

  • Feng, Y., Chen, X., Cassady, K., Zou, Z., Yang, S., & ZHANG, X. J. F. i. O. (2020). The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside. 10, 3043.

  • Filfan M, Olaru A, Udristoiu I, Margaritescu C, Petcu E, Hermann DM, Popa-Wagner A (2020) Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. Geroscience 42(3):937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Nehme J, Demaria M (2018) Caloric restriction and cellular senescence. Mech Ageing Dev 176:19–23. https://doi.org/10.1016/j.mad.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  • Freitag, K., Sterczyk, N., Schulz, J., Houtman, J., Fleck, L., Sigrist, S. J., Heppner, F. L., & Jendrach, M. (2020). The autophagy activator Spermidine ameliorates Alzheimer's disease pathology and neuroinflammation in mice. bioRxiv.

  • Gabandé-Rodríguez, E., Gómez de Las Heras, M. M., & Mittelbrunn, M. (2019). Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 9(1). doi: https://doi.org/10.3390/cells9010082

  • Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharmaceutical Journal 25(2):149–164

    Article  PubMed  Google Scholar 

  • Gao, Y., Wang, C., Jiang, D., An, G., Jin, F., Zhang, J., Han, G., Cui, C., & Jiang, P. (2022). New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Frontiers in Cell and Developmental Biology, 10.

  • Gelderblom, M., Leypoldt, F., Lewerenz, J., Birkenmayer, G., Orozco, D., Ludewig, P., Thundyil, J., Arumugam, T. V., Gerloff, C., Tolosa, E. J. J. o. C. B. F., & Metabolism. (2012). The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. 32(5), 835–843.

  • Ghosh I, Sankhe R, Mudgal J, Arora D, Nampoothiri M (2020) Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 83:2083

    Article  Google Scholar 

  • Gillespie ZE, Pickering J, Eskiw CH (2016) Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Front Genet 7:142. https://doi.org/10.3389/fgene.2016.00142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes Junior AL, Islam MT, Nicolau LA, de Souza LK, Araújo TD, Lopes de Oliveira GA, de Melo Nogueira K, da Silva Lopes L, Medeiros JV, Mubarak MS, Melo-Cavalcante AA (2020) Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models. ACS Omega 5(31):19506–19515

  • HALLER, C. A. (2004) Weight Reduction Therapies: Anorectants. Thermogenics Principles of Gender-Specific Medicine 2:874

    Article  Google Scholar 

  • Han, J., Miyamae, Y., Shigemori, H., & Isoda, H. J. N. (2010). Neuroprotective effect of 3, 5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. 169(3), 1039–1045.

  • Hemanth Kumar, B., Arun Reddy, R., Mahesh Kumar, J., Dinesh Kumar, B., Diwan, P. V. J. C. j. o. p., & pharmacology. (2017). Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia. 95(1), 32–42.

  • Ho L, Varghese M, Wang J, Zhao W, Chen F, Knable LA, Ferruzzi M, Pasinetti GM (2012) Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice. Nutr Neurosci 15(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J (2015) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57(3):456–466

    Article  CAS  PubMed  Google Scholar 

  • Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46(2–3):148–154

    Article  CAS  PubMed  Google Scholar 

  • Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 107:86–95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  • Ishida K, Misawa K, Nishimura H, Hirata T, Yamamoto M, Ota N (2020) 5-Caffeoylquinic acid ameliorates cognitive decline and reduces Aβ deposition by modulating Aβ clearance pathways in APP/PS2 transgenic mice. Nutrients. https://doi.org/10.3390/nu12020494

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Ishikawa M, Miyoshi N, Yasunaga M, Akagawa M, Uchida K, Nakamura Y (2009) Catechol type polyphenol is a potential modifier of protein sulfhydryls: development and application of a new probe for understanding the dietary polyphenol actions. Chem Res Toxicol 22(10):1689–1698. https://doi.org/10.1021/tx900148k

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Zaman A, Jahan I, Chakravorty R, Chakraborty S (2013) In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J Young Pharm 5(4):173–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh K, Ishii T, Wakabayashi N, Yamamoto M (1999) Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 31(4):319–324

    Article  CAS  PubMed  Google Scholar 

  • James AM, Hoogewijs K, Logan A, Hall AR, Ding S, Fearnley IM, Murphy MP (2017) Non-enzymatic N-acetylation of lysine residues by acetylCoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep 18(9):2105–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamwal S, Singh S, Kaur N, Kumar P (2015) Protective effect of spermidine against excitotoxic neuronal death induced by quinolinic acid in rats: possible neurotransmitters and neuroinflammatory mechanism. Neurotoxicol Res 28(2):171–184

    Article  CAS  Google Scholar 

  • Jeon M, Park J, Yang E, Baek HJ, Kim H (2022) Regulation of autophagy by protein methylation and acetylation in cancer. J Cell Physiol 237(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP (2016) Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol 242(8):1403–1409

    Article  CAS  Google Scholar 

  • Ji LL, Sheng YC, Zheng ZY, Shi L, Wang ZT (2015) The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med 85:12–23. https://doi.org/10.1016/j.freeradbiomed.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  • Joaquim HP, Costa AC, Forlenza OV, Gattaz WF, Talib LL (2019) Decreased plasmatic spermidine and increased spermine in mild cognitive impairment and Alzheimer’s disease patients. Arch Clin Psychiatry (São Paulo) 46:120–124

    Article  Google Scholar 

  • Karja NWK, Fahrudin M, Kikuchi K (2009) Inhibitory effect of iodoacetate on developmental competence of porcine early stage embryos in vitro. HAYATI J Biosci 16(1):25–29

    Article  Google Scholar 

  • Kato M, Ochiai R, Kozuma K, Sato H, Katsuragi Y (2018) Effect of chlorogenic acid intake on cognitive function in the elderly: a pilot study. Evid Based Complement Altern Med 2018:8608497. https://doi.org/10.1155/2018/8608497

    Article  Google Scholar 

  • Kepp O, Chen G, Carmona-Gutierrez D, Madeo F, Kroemer G (2020) A discovery platform for the identification of caloric restriction mimetics with broad health-improving effects. Autophagy 16(1):188–189

    Article  CAS  PubMed  Google Scholar 

  • Kershaw J, Kim K-H (2017) The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: a review. J Med Food 20(5):427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khomutov M, Hyvönen MT, Simonian A, Formanovsky AA, Mikhura IV, Chizhov AO, Kochetkov SN, Alhonen L, Vepsäläinen J, Keinänen TA (2019) Unforeseen possibilities to investigate the regulation of polyamine metabolism revealed by novel C-methylated spermine derivatives. J Med Chem 62(24):11335–11347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo C, Falk M (2014) Polyphenols in the prevention and treatment of vascular and cardiac disease, and cancer. Polyphenols Hum Health Dis 2:1049–1065

    Article  CAS  Google Scholar 

  • Kim GH, Komotar RJ, McCullough-Hicks ME, Otten ML, Starke RM, Kellner CP, Garrett MC, Merkow MB, Rynkowski M, Dash KA (2009) The role of polyamine metabolism in neuronal injury following cerebral ischemia. Can J Neurol Sci 36(1):14–19

    Article  PubMed  Google Scholar 

  • Kim H-S, Quon MJ, Kim J-A (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee S, Shim J, Kim HW, Kim J, Jang YJ, Yang H, Park J, Choi SH, Yoon JH, Lee KW (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem Int 60(5):466–74

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Lee MS (2014) Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337. https://doi.org/10.1038/nrendo.2014.35

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395

    Article  CAS  PubMed  Google Scholar 

  • Kitada M, Ogura Y, Koya D (2016) Role of Sirt1 as a regulator of autophagy. In Hayat MA (ed) autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, pp 89–100. Academic Press. https://doi.org/10.1016/B978-0-12-802937-4.00003-X

  • Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Mesgari-Abbasi M, Salari AA (2019) Quercetin mitigates anxiety-like behavior and normalizes hypothalamus–pituitary–adrenal axis function in a mouse model of mild traumatic brain injury. Behav Pharmacol 30(2):282–9

    Article  CAS  PubMed  Google Scholar 

  • Kuchitsu Y, Fukuda M (2018) Revisiting Rab7 functions in mammalian autophagy: Rab7 knockout studies. Cells. https://doi.org/10.3390/cells7110215

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurata HT, Cheng WW, Nichols CG (2011) Polyamine block of inwardly rectifying potassium channels. Polyamines. Springer, New York, pp 113–126

    Chapter  Google Scholar 

  • Kyriazis M. Calorie Restriction Mimetics. In: PMID

  • Laube G, Bernstein H-G, Veh RW, Weiss T (2014) The rationale for the localization of polyamine pathway enzymes in the brain

  • Leiva A, Contreras-Duarte S, Amigo L, Sepúlveda E, Boric M, Quiñones V, Busso D, Rigotti A (2017) Gugulipid causes hypercholesterolemia leading to endothelial dysfunction, increased atherosclerosis, and premature death by ischemic heart disease in male mice. PLoS ONE 12(9):e0184280

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemon JA, Boreham DR, Rollo CD (2005) A complex dietary supplement extends longevity of mice. J Gerontol A Biol Sci Med Sci 60(3):275–279

    Article  PubMed  Google Scholar 

  • Lennicke C, Cochemé HM (2020) Redox signalling and ageing: insights from Drosophila. Biochem Soc Trans 48(2):367–377. https://doi.org/10.1042/bst20190052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Shao R, Wang N, Zhou N, Du K, Shi J, Wang Y, Zhao Z, Ye X, Zhang X, Xu H (2021a) Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 17(4):872–887. https://doi.org/10.1080/15548627.2020.1739442

    Article  CAS  PubMed  Google Scholar 

  • Li H, Shen Y, Xiao H, Sun W (2021) Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. Pathol Res Pract 225:153576. https://doi.org/10.1016/j.prp.2021.153576

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19(3):373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XM, Liu J, Pan FF, Shi DD, Wen ZG, Yang PL (2018) Quercetin and aconitine synergistically induces the human cervical carcinoma HeLa cell apoptosis via endoplasmic reticulum (ER) stress pathway. PLoS ONE 13(1):e0191062

    Article  PubMed  PubMed Central  Google Scholar 

  • Liczbiński P, Michałowicz J, Bukowska B (2020) Molecular mechanism of curcumin action in signaling pathways: review of the latest research. Phytother Res 34(8):1992–2005

    Article  PubMed  Google Scholar 

  • Lim J, Lee SH, Cho S, Lee IS, Kang BY, Choi HJ (2013) 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol Cells 36(4):340–346. https://doi.org/10.1007/s10059-013-0123-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Park S-H, Imbesi M, Nathan WJ, Zou X, Zhu Y, Jiang H, Parisiadou L, Gius D (2017) Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid Redox Signal 26(15):849–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ding R, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X (2021) Roles and mechanisms of the protein quality control system in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms23010345

    Article  PubMed  PubMed Central  Google Scholar 

  • Lushchak VI (2021) Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch 473(5):713–722. https://doi.org/10.1007/s00424-021-02531-4

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Sun Z, Han X, Li S, Jiang X, Chen S, Zhang J, Lu H (2019) Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a rat model of combined diabetes and Alzheimer’s disease. Front Neurosci 13:1400. https://doi.org/10.3389/fnins.2019.01400

    Article  PubMed  Google Scholar 

  • Ma Y, Shi Y, Wu Q, Ma W (2021) Epigallocatechin-3-gallate alleviates vanadium-induced reduction of antioxidant capacity via Keap1-Nrf2-sMaf pathway in the liver, kidney, and ovary of laying hens. Biol Trace Elem Res 199(7):2707–2716. https://doi.org/10.1007/s12011-020-02398-z

    Article  CAS  PubMed  Google Scholar 

  • Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29(3):592–610

    Article  CAS  PubMed  Google Scholar 

  • Madeo F, Eisenberg T, Pietrocola F, Kroemer G (2018) Spermidine in health and disease. Science 359(6374):eaan2788

    Article  PubMed  Google Scholar 

  • Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13(10):727–740

    Article  CAS  PubMed  Google Scholar 

  • Maglione M, Kochlamazashvili G, Eisenberg T, Rácz B, Michael E, Toppe D, Stumpf A, Wirth A, Zeug A, Müller FE (2019a) Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Maglione M, Kochlamazashvili G, Eisenberg T, Rácz B, Michael E, Toppe D, Stumpf A, Wirth A, Zeug A, Müller FE (2019b) Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci Rep 9(1):19616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 20(2):261–70

    Article  CAS  PubMed  Google Scholar 

  • Maher P (2020) Preventing and treating neurological disorders with the flavonol fisetin. Brain Plast. 6(2):155–66

    Article  Google Scholar 

  • Maher P (2015) Fisetin acts on multiple pathways to reduce the impact of age and disease on CNS function. Front Biosci (Scholar edition). 7:58

    Article  PubMed Central  Google Scholar 

  • Mariño G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, Schroeder S, Pendl T, Harger A, Niso-Santano M (2014) Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 53(5):710–725

    Article  PubMed  Google Scholar 

  • Marino G, Pietrocola F, Madeo F, Kroemer G (2014) Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy 10(11):1879–1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Marras C, Beck J, Bower J, Roberts E, Ritz B, Ross G, Abbott R, Savica R, Van Den Eeden S, Willis A (2018) Parkinson’s foundation P4 group. NPJ Parkinsons Dis 4(21):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastaloudis A, Sheth C, Hester SN, Wood SM, Prescot A, McGlade E, Renshaw PF, Yurgelun-Todd DA (2020) Supplementation with a putative calorie restriction mimetic micronutrient blend increases glutathione concentrations and improves neuroenergetics in brain of healthy middle-aged men and women. Free Radical Biol Med 153:112–121

    Article  CAS  Google Scholar 

  • Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Altern Med 2013:801457–801457. https://doi.org/10.1155/2013/801457

    Article  Google Scholar 

  • Morgan MJ, Liu Z-G (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Mubarak A, Hodgson JM, Considine MJ, Croft KD, Matthews VB (2013) Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. J Agric Food Chem 61(18):4371–4378

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC (2019) Polyamines in food. Front Nutr 6:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabavi SF, Braidy N, Habtemariam S, Sureda A, Manayi A, Nabavi SM (2016) Neuroprotective effects of fisetin in Alzheimer’s and Parkinson’s diseases: from chemistry to medicine. Curr Top Med Chem 16(17):1910–1915. https://doi.org/10.2174/1568026616666160204121725

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Shimazawa M, Mishima S, Hara H (2007) Water extract of propolis and its main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via antioxidant actions. Life Sci 80(4):370–377. https://doi.org/10.1016/j.lfs.2006.09.017

    Article  CAS  PubMed  Google Scholar 

  • Ngoi NY, Liew AQ, Chong SJF, Davids MS, Clement MV, Pervaiz S (2021) The redox-senescence axis and its therapeutic targeting. Redox Biol 45:102032. https://doi.org/10.1016/j.redox.2021.102032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni YQ, Liu YS (2021) New insights into the roles and mechanisms of spermidine in aging and age-related diseases. Aging Dis. 12(8):1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Norwitz NG, Querfurth H (2020) mTOR mysteries: nuances and questions about the mechanistic target of rapamycin in neurodegeneration. Front Neurosci. https://doi.org/10.3389/fnins.2020.00775

    Article  PubMed  PubMed Central  Google Scholar 

  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38:413–9

    Article  CAS  PubMed  Google Scholar 

  • Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T (2020) 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci 21(1):234

    Article  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. University Press, London

    Google Scholar 

  • Pernicova I, Korbonits M (2014) Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156

    Article  CAS  PubMed  Google Scholar 

  • Pietrocola F, Demont Y, Castoldi F, Enot D, Durand S, Semeraro M, Baracco EE, Pol J, Bravo-San Pedro JM, Bordenave C (2017) Metabolic effects of fasting on human and mouse blood in vivo. Autophagy 13(3):567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015a) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21(6):805–821

    Article  CAS  PubMed  Google Scholar 

  • Pietrocola F, Lachkar S, Enot D, Niso-Santano M, Bravo-San Pedro J, Sica V, Izzo V, Maiuri M, Madeo F, Mariño G (2015b) Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ 22(3):509–516

    Article  CAS  PubMed  Google Scholar 

  • Plumlee K (2003) Clinical veterinary toxicology-E-Book. Elsevier Health Sciences

  • Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK (2021) Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: an updated review. Eur J Pharmacol 5(910):174492

    Article  Google Scholar 

  • Reith W (2018) Neurodegenerative diseases. Radiologe 58(3):241–258. https://doi.org/10.1007/s00117-018-0363-y(NeurodegenerativeErkrankungen.)

    Article  PubMed  Google Scholar 

  • Roth GS, Lane MA, Ingram DK (2005) Caloric restriction mimetics: the next phase. Ann N Y Acad Sci 1057(1):365–371

    Article  CAS  PubMed  Google Scholar 

  • Saadat N, Gupta SV (2012) Potential role of garcinol as an anticancer agent. J Oncol. https://doi.org/10.1155/2012/647206

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M (2020) Therapeutic potential of quercetin: New insights and perspectives for human health. Acs Omega 5(20):11849–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Rangel E, Inzucchi SE (2017) Metformin: clinical use in type 2 diabetes. Diabetologia 60(9):1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Sandhir R, Mehrotra A (2013) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta BBA. 1832(3):421–30

    Article  CAS  PubMed  Google Scholar 

  • Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22(3):358

    Article  PubMed  PubMed Central  Google Scholar 

  • Schewe T, Sies H (2009) Epicatechin and its role in protection of LDL and of vascular endothelium. Beer in Health and Disease Prevention. Elsevier, Amsterdam, pp 803–813

    Chapter  Google Scholar 

  • Seto B (2012) Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med 1(1):1–7

    Article  Google Scholar 

  • Shanmugam T, Selvaraj M, Poomalai S (2016) Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: an in-vivo and in-silico study. Int Immunopharmacol 39:128–139. https://doi.org/10.1016/j.intimp.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Qi R, Zhang J, Wang Z, Wang H, Hu C, Zhao Y, Bie M, Wang Y, Fu Y, Chen M, Lu D (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull 88(5):487–494. https://doi.org/10.1016/j.brainresbull.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  • Sienkiewicz N, Członka S, Kairyte A, Vaitkus S (2019) Curcumin as a natural compound in the synthesis of rigid polyurethane foams with enhanced mechanical, antibacterial and anti-ageing properties. Polym Test 79:106046

    Article  CAS  Google Scholar 

  • Signor C, Mello CF, Porto GP, Ribeiro DA, Rubin MA (2014) Spermidine improves fear memory persistence. Eur J Pharmacol 730:72–76

    Article  CAS  PubMed  Google Scholar 

  • Silvestro S, Bramanti P, Mazzon E (2021) Role of quercetin in depressive-like behaviors: findings from animal models. Appl Sci 11(15):7116

    Article  CAS  Google Scholar 

  • Simsek B, Yanar K, Kansu AD, Belce A, Aydin S, Çakatay U (2019) Caloric restriction improves the redox homeostasis in the aging male rat heart even when started in middle-adulthood and when the body weight is stable. Biogerontology 20(1):127–140. https://doi.org/10.1007/s10522-018-9781-5

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Kashyap MP, Tripathi VK, Singh S, Garg G, Rizvi SI (2017) Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol 54(8):5815–5828

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Garg G, Singh AK, Bissoyi A, Rizvi SI (2019) Fisetin, a potential caloric restriction mimetic, attenuates senescence biomarkers in rat erythrocytes. Biochem Cell Biol 97(4):480–487

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar R, Garg G, Singh AK, Verma AK, Bissoyi A, Rizvi SI (2021) Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and D-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging. Biogerontology 22(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh AK, Garg G, Rizvi SI (2018) Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci 193:171–179

    Article  CAS  PubMed  Google Scholar 

  • Song IY, Snyder AM, Kim Y, Neely EB, Wade QW, Connor JR (2020) The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology 441:152525. https://doi.org/10.1016/j.tox.2020.152525

    Article  CAS  PubMed  Google Scholar 

  • Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM (2016) Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed Pharmacother 84:892–908

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Li X, Zhang P, Chen W-D, Zhang H-L, Li D-D, Deng R, Qian X-J, Jiao L, Ji J (2015) Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun 6(1):1–12

    Article  Google Scholar 

  • Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D (2011) The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care 14(1):41–48. https://doi.org/10.1097/MCO.0b013e32834136f2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr. https://doi.org/10.1007/s00394-017-1379-1

    Article  PubMed  Google Scholar 

  • Tan Y, Wan HH, Sun MM, Zhang WJ, Dong M, Ge W, Ren J, Peng H (2021) Cardamonin protects against lipopolysaccharide-induced myocardial contractile dysfunction in mice through Nrf2-regulated mechanism. Acta Pharmacol Sin 42(3):404–413. https://doi.org/10.1038/s41401-020-0397-3

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Chen X-F, Wang N-Y, Wang X-M, Liang S-T, Zheng W, Lu Y-B, Zhao X, Hao D-L, Zhang Z-Q (2017) SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 136(21):2051–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teraoka M, Nakaso K, Kusumoto C, Katano S, Tajima N, Yamashita A, Zushi T, Ito S, Matsura TJJ, o. c. b., & nutrition. (2012) Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J Chem Biochem Nutr 51(2):122–127

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Venkidasamy B, Subramanian U, Samynathan R, Ali Shariati M, Rebezov M, Girish S, Thangavel S, Dhanapal AR, Fedoseeva N, Lee J, Chung IM (2021) Bioactive compounds in oxidative stress-mediated diseases: targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants (Basel). https://doi.org/10.3390/antiox10121859

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Mishra B, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. BioMed Res Int

  • Udono H, Nishida M (2022) Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing. Biochim Biophys Acta 1866(8):130171. https://doi.org/10.1016/j.bbagen.2022.130171

    Article  CAS  Google Scholar 

  • Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102(5):519–528. https://doi.org/10.1161/circresaha.107.168369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardi N, Parlakpinar H, Ates BJJ, o. c. n. (2012) Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage in rats. J Chem Neuroanat 43(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Wald NJ, Law MR (2003) A strategy to reduce cardiovascular disease by more than 80%. BMJ 326(7404):1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang K, Ding L, Zhao P, Zhang C, Wang H, Yang Z, Liu Z (2022) Alleviating effect of quercetin on cadmium-induced oxidative damage and apoptosis by activating the Nrf2-keap1 pathway in BRL-3A cells. Front Pharmacol 13:969892. https://doi.org/10.3389/fphar.2022.969892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang H (2019) Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol 1206:67–83. https://doi.org/10.1007/978-981-15-0602-4_3

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Liu JJ, Cao J, Du NC, Ji LN, Yang XL (2012) Role of autophagy in quercetin-induced apoptosis in human bladder carcinoma BIU-87 cells. Chin J Oncol. 34(6):414–8

    CAS  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(1):1074–1082

    Article  Google Scholar 

  • Xu R, Kang Q, Ren J, Li Z, Xu X (2013) Antitumor molecular mechanism of chlorogenic acid on inducting genes gsk-3β and apc and inhibiting gene β-catenin. J Anal Methods Chem. https://doi.org/10.1155/2013/951319

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamanaka D, Kawano T, Nishigaki A, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, Locatelli FM, Yokoyama M (2017) Effects of epigallocatechin-3-gallate on systemic inflammation-induced cognitive dysfunction in aged rats. J Anesth 31:726–735

    Article  PubMed  Google Scholar 

  • Yan Y, Zhou X, Guo K, Zhou F, Yang H (2020) Use of chlorogenic acid against diabetes mellitus and its complications. J Immunol Res 2020:9680508. https://doi.org/10.1155/2020/9680508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanar K, Atayik MC, Simsek B, Çakatay U (2020) Novel biomarkers for the evaluation of aging-induced proteinopathies. Biogerontology 21(5):531–548. https://doi.org/10.1007/s10522-020-09878-8

    Article  PubMed  Google Scholar 

  • Yanar K, Simsek B, Atukeren P, Aydin S, Cakatay U (2019a) Is D-galactose a useful agent for accelerated aging model of gastrocnemius and soleus muscle of Sprague-Dawley rats? Rejuvenation Res 22(6):521–528. https://doi.org/10.1089/rej.2019.2185

    Article  CAS  PubMed  Google Scholar 

  • Yanar K, Simsek B, Çaylı N, Övül Bozkır H, Mengi M, Belce A, Aydin S, Çakatay U (2019) Caloric restriction and redox homeostasis in various regions of aging male rat brain: Is caloric restriction still worth trying even after early-adulthood?: Redox homeostasis and caloric restriction in brain. J Food Biochem 43(3):e12740. https://doi.org/10.1111/jfbc.12740

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen S, Zhang Y, Lin X, Song Y, Xue Z, Qian H, Wang S, Wan G, Zheng X (2017) Induction of autophagy by spermidine is neuroprotective via inhibition of caspase 3-mediated Beclin 1 cleavage. Cell Death Dis 8(4):e2738–e2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud A-R, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T (2020) Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients 12(5):1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Xiao JH (2021) The keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid Med Cell Longev 2021:6635460. https://doi.org/10.1155/2021/6635460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C (2021) Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res 34:43–63. https://doi.org/10.1016/j.jare.2021.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Gong L, Wang C, Liu M, Hu N, Dai X, Peng C, Li Y (2021) Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. J Ethnopharmacol 268:113569. https://doi.org/10.1016/j.jep.2020.113569

    Article  CAS  PubMed  Google Scholar 

  • Zhong L-M, Zong Y, Sun L, Guo J-Z, Zhang W, He Y, Song R, Wang W-M, Xiao C-J, Lu DJPO (2012) Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS ONE 7(2):2195

    Article  Google Scholar 

  • Zhou J, Liao W, Yang J, Ma K, Li X, Wang Y, Wang D, Wang L, Zhang Y, Yin Y, Zhao Y, Zhu WG (2012) FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy 8(12):1712–1723. https://doi.org/10.4161/auto.21830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Xue Z, He H-N, Liu X, Yin S-Y, Wu D-Y, Zhang X, Schatten H, Miao Y-L (2019) Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy. Aging (albany NY) 11(23):11504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Amity University Uttar Pradesh, Noida, India. We apologize to all authors whose reports on caloric restriction mimetics could not be covered in this review.

Author information

Authors and Affiliations

Authors

Contributions

A.S. Literature review, and writing of the original draft; A.S. Prepared figure 1-3; A.K.S. Prepared figures 4-5; A.K.S. Conceptualization, supervision, and final reviewing and editing; All authors reviewed the manuscript

Corresponding author

Correspondence to Abhishek Kumar Singh.

Ethics declarations

Ethical approval

None.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Singh, A.K. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 24, 679–708 (2023). https://doi.org/10.1007/s10522-023-10045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-023-10045-y

Keywords

Navigation