Skip to main content
Log in

Protective Effect of Spermidine Against Excitotoxic Neuronal Death Induced by Quinolinic Acid in Rats: Possible Neurotransmitters and Neuroinflammatory Mechanism

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Huntington disease is hyperkinetic movement disorder characterized by selective and immense degradation of GABAergic medium spiny neurons in striatum. Quinolinic acid (QA)-induced neurotoxicity involves a cascade of events such as excitotoxicity, ATP depletion, oxidative stress, neuroinflammation, as well as selective GABAergic neuronal loss. Therefore, we investigated spermidine, an endogenous molecule with free radical scavenging, anti-inflammatory, and N-methyl-d-aspartate receptor antagonistic properties, for its beneficial potential if any, in QA-induced Huntington’s like symptoms in rats. Rats were administered with QA (200 nmol/2 µl saline) bilaterally on 0 day. Spermidine (5 and 10 mg/kg, p.o.) was administered for 21 days once a day. Behavioral parameters (body weight, locomotor activity, grip strength, and narrow beam walk) observations were done on 1st, 7th, 14th, and 21st day after QA treatment. On 21st day, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH, Nitrite), neuroinflammation (TNF-α, IL-1β, and IL-6), and neurochemical analysis (GABA, glutamate, dopamine, norepinephrine, serotonin, DOPAC, HVA, 5-HIAA, adenosine, adenine, hypoxanthine, and inosine). QA treatment significantly altered body weight, locomotor activity, motor coordination, oxidative defense (increased LPO, nitrite, and decreased GSH), pro-inflammatory levels (TNF-α, IL-6 and IL-1β), GABA, glutamate, catecholamines level (norepinephrine, dopamine, and serotonin and their metabolites), and purines level (adenosine, inosine, and hypoxanthine). Spermidine (5 and 10 mg/kg, p.o.) significantly attenuated these alterations in body weight, motor impairments, oxidative stress, neuroinflammatory markers, GABA, glutamate, catecholamines, adenosine, and their metabolites levels in striatum. The neuroprotective effect of spermidine against QA-induced excitotoxic cell death is attributed to its antioxidant, N-methyl-d-aspartate receptor antagonistic, anti-inflammatory properties, and prevention of neurotransmitters alteration in striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

QA:

Quinolinic acid

HD:

Huntington’s disease

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

MSNs:

Medium spiny neurons

NF-кB:

Nuclear factor-kappa beta

NMDA:

N-methyl-d-aspartate

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-alpha

IL-1β:

Interleukin-1 βeta

DOPAC:

3,4-Dihydroxyphenylacetic acid

HVA:

Homovanillic acid

5-HIAA:

5-Hydroxy 3-indole acetic acid

References

  • Akula KK, Kaur M, Bishnoi M, Kulkarni SK (2008) Development and validation of an RP-HPLC method for the estimation of adenosine and related purines in brain tissues of rats. J Sep Sci 31(18):3139–3147

    Article  CAS  PubMed  Google Scholar 

  • Aldinio C, Mazzari S, Toffano G, Köhler C, Schwarcz R (1985) Effects of intracerebral injections of quinolinic acid on serotonergic neurons in the rat brain. Brain Res 341(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31:119–130

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (1994) Neurochemistry and toxin models in Huntington’s disease. Curr Opin Neurol 7:542–547

    Article  CAS  PubMed  Google Scholar 

  • Belle NAV, Dalmolin GD, Fonini G, Rubin MA, Rocha JBT (2004) Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008(2):245–251

    Article  CAS  PubMed  Google Scholar 

  • Belle NA, Dalmolin GD, Fonini G, Gindri Sinhorin VD, Ferreira da Silveira A, Rubin MA et al (2008) Spermine attenuates behavioral and biochemical alterations induced by quinolinic acid in the striatum of rats. Brain Res 1198:107–114

    Article  Google Scholar 

  • Blum D, Gall D, Galas MC, d’Alcantara P, Bantubungi K, Schiffmann SN (2002) The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 22:9122–9133

    CAS  PubMed  Google Scholar 

  • Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN (2003) Adenosine receptors in Huntington’s disease. Lancet Neurol 2:366–374

    Article  CAS  PubMed  Google Scholar 

  • Brouillet E (2014) The 3-NP model of striatal neurodegeneration. Curr Protoc Neurosci. 9(48):1–9

    Google Scholar 

  • Brown P, Dale N (2000) Adenosine A1 receptors modulate high voltage-activated Ca2+ currents and motor pattern generation in the Xenopus embryo. J Physiol 525(3):655–667

  • Caraceni T, Girotti F, Giovannini P, Pederzoli M, Parati E (1979) Effects of DA agonist in Huntington disease hyperkinesia. Ital J Neurol Sci 1(2):155–161

    Article  Google Scholar 

  • Carter C (1994) Neuropharmacology of Polyamines. Academic Press, Londres

    Google Scholar 

  • Carvalho FB, Mello CF, Marisco PC, Tonello R, Girardi BA, Ferreira J et al (2012) Spermidine decreases Na+, K+-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats. Eur J Pharmacol 684(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Charara A, Heilman C, Levey A, Smith Y (1999) Pre-and postsynaptic localization of GABA B receptors in the basal ganglia in monkeys. Neuroscience 95(1):127–140

    Article  Google Scholar 

  • Chen JY, Wang EA, Cepeda C, Levine MS (2013) Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci. 7:114

    PubMed Central  PubMed  Google Scholar 

  • Coert BA, Anderson RE, Meyer FB (2000) Exogenous spermine reduces ischemic damage in a model of focal cerebral ischemia in the rat. Neurosci Lett 282(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Dale N, Gilday D (1996) Regulation of rhythmic movements by purinergic neurotransmitters in frog embryos. Nature 383(6597):259–263

  • Donzanti BA, Yamamoto BK (1988) An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 43:913–922

  • Drew PD, Chavis JA (2000) Inhibition of microglial cell activation by cortisol. Brain Res Bull 52(5):391–396

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • Gallagher MJ, Huang H, Grant ER, Lynch DR (1997) The NR2B-specific interactions of polyamines and protons with the N-methyl-d-aspartate receptor. J Biol Chem 272(40):24971–24979

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Jhamandas K, Boegman R, Beninger R, Miranda A, Lipic K (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotox Res 2(2–3):139–155

    Article  CAS  PubMed  Google Scholar 

  • Jongen P, Renier W, Gabreels F (1980) Seven cases of Huntington’s disease in childhood and levodopa induced improvement in the hypokinetic—rigid form. Clin Neurol Neurosurg 82(4):251–261

    Article  CAS  PubMed  Google Scholar 

  • Kalonia H, Mishra J, Kumar A (2012) Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox Res 22(4):310–320

  • Khan A, Jamwal S, Bijjem KRV, Prakash A, Kumar P (2015) Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid induced neurotoxicity in rats. Neuroscience 287:66–77

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid induced cognitive deficit, glutathione and mitochondrial alteration in animal model of Huntington’s disease. Behav Pharmacol 21(3):217–230

  • Kumar P, Kalonia H, Kumar A (2011) Novel protective mechanisms of antidepressants against 3-nitroproprionic acid induced Huntington’s-like symptoms: a comparative study. J Psychopharmacol 25(10):1399–1411

  • Kumar P, Kalonia H, Kumar A (2012) Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur J Pharmacol 674(2):265–274

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kumar P, Khan A, Deshmukh R, Lal Sharma P (2014) Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats. Eur J Pharmacol 723:38–45

    Article  CAS  PubMed  Google Scholar 

  • Lacey C, Boyes J, Gerlach O, Chen L, Magill P, Bolam J (2005) GABA B receptors at glutamatergic synapses in the rat striatum. Neuroscience 136(4):1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Leegwater-Kim J, Cha J-HJ (2004) The paradigm of Huntington’s disease: therapeutic opportunities in neurodegeneration. NeuroRx. 1(1):128–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E et al (2010) Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci 107(39):16970–16975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovaas E (1996) Antioxidative and metal-chelating effects of polyaminesI. Antioxid Dis Mech Ther Strateg 38:119

    Google Scholar 

  • Lovaas E, Carlin G (1991) Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med 11(5):455–461

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Madeo F, Eisenberg T, Büttner S, Ruckenstuhl C, Kroemer G (2010) Spermidine: a novel autophagy inducer and longevity elixir. Autophagy. 6(1):160–162

    Article  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma P (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1):6–18

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD et al (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65(2):178–190

    Article  CAS  PubMed  Google Scholar 

  • Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging (Albany NY). 3(8):716

    PubMed Central  PubMed  Google Scholar 

  • Mishra J, Kumar A (2014) Improvement of mitochondrial function by paliperidone attenuates quinolinic acid-induced behavioural and neurochemical alterations in rats: implications in Huntington’s disease. Neurotox Res 26(4):363–381

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic press, San Diego

    Google Scholar 

  • Pérez-De La Cruz V, Carrillo-Mora P, Santamaría A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. IJTR. 5:1

    PubMed Central  PubMed  Google Scholar 

  • Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington’s disease. ILAR J 48(4):356–373

    Article  CAS  PubMed  Google Scholar 

  • Rock DM, Macdonald RL (1995) Polyamine regulation of N-methyl-d-aspartate receptor channels. Annu Rev Pharmacol Toxicol 35(1):463–482

    Article  CAS  PubMed  Google Scholar 

  • Standaert DG, Friberg IK, Landwehrmeyer GB, Young AB, Penney J (1999) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Mol Brain Res 64(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A 2A receptors. Prog Neurobiol 59:355–396

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Nehru B (2013) Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience 231:420–431

    Article  CAS  PubMed  Google Scholar 

  • Thangarajan S, Deivasigamani A, Natarajan SS, Krishnan P, Mohanan SK (2014) Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum. Int J Neurosci. 124:673

    Article  CAS  PubMed  Google Scholar 

  • Velloso NA, Dalmolin GD, Fonini G, Gindri Sinhorin VD, Ferreira da Silveira A, Rubin MA, et al (2008) Spermine attenuates behavioral and biochemical alterations induced by quinolinic acid in the striatum of rats. Brain Res 1198:107–114

  • Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Science and Engineering Board (SERB), Department of Science and Technology, Govt. of India, New Delhi for providing financial assistance under Fast Track Scheme (DST-SERB-FTYS) to Dr. Puneet Kumar. The Junior Research Fellowship to Mr. Sumit Jamwal is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamwal, S., Singh, S., Kaur, N. et al. Protective Effect of Spermidine Against Excitotoxic Neuronal Death Induced by Quinolinic Acid in Rats: Possible Neurotransmitters and Neuroinflammatory Mechanism. Neurotox Res 28, 171–184 (2015). https://doi.org/10.1007/s12640-015-9535-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9535-y

Keywords

Navigation