Skip to main content
Log in

The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Chlorogenic acid (CGA), an important biologically active dietary polyphenol, is produced by certain plant species and is a major component of coffee. Reduction in the risk of a variety of diseases following CGA consumption has been mentioned in recent basic and clinical research studies. This systematic review discusses in vivo animal and human studies of the physiological and biochemical effects of chlorogenic acids (CGAs) on biomarkers of chronic disease. We searched PubMed, Embase, Amed and Scopus using the following search terms: (“chlorogenic acid” OR “green coffee bean extract”) AND (human OR animal) (last performed on April 1st, 2015) for relevant literature on the in vivo effects of CGAs in animal and human models, including clinical trials on cardiovascular, metabolic, cancerogenic, neurological and other functions. After exclusion of editorials and letters, uncontrolled observations, duplicate and not relevant publications the remaining 94 studies have been reviewed. The biological properties of CGA in addition to its antioxidant and anti-inflammatory effects have recently been reported. It is postulated that CGA is able to exert pivotal roles on glucose and lipid metabolism regulation and on the related disorders, e.g. diabetes, cardiovascular disease (CVD), obesity, cancer, and hepatic steatosis. The wide range of potential health benefits of CGA, including its anti-diabetic, anti-carcinogenic, anti-inflammatory and anti-obesity impacts, may provide a non-pharmacological and non-invasive approach for treatment or prevention of some chronic diseases. In this study, the effects of CGAs on different aspects of health by reviewing the related literatures have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haskell CF, Kennedy DO, Milne AL, Wesnes KA, Scholey AB (2008) The effects of l-theanine, caffeine and their combination on cognition and mood. Biol Psychol 77(2):113–122

    Article  Google Scholar 

  2. Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology (Berl) 179(4):813–825

    Article  CAS  Google Scholar 

  3. Rees K, Allen D, Lader M (1999) The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology (Berl) 145(2):181–188

    Article  CAS  Google Scholar 

  4. Zhang L-Y, Cosma G, Gardner H, Vallyathan V, Castranova V (2003) Effect of chlorogenic acid on hydroxyl radical. Mol Cell Biochem 247(1–2):205–210

    Article  CAS  Google Scholar 

  5. Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50(20):5735–5741

    Article  CAS  Google Scholar 

  6. Clifford MN (2000) Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043

    Article  CAS  Google Scholar 

  7. Perrone D, Donangelo R, Donangelo CM, Farah A (2010) Modeling weight loss and chlorogenic acids content in coffee during roasting. J Agric Food Chem 58 (23):12238–12243

    Article  CAS  Google Scholar 

  8. Lafay S G-IA, Manach C, Morand C, Besson C, Scalbert A. (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136 (5):1192–1197

    CAS  Google Scholar 

  9. Konishi YKS (2004) Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. J Agric Food Chem 52 (9):2518–2526

    Article  CAS  Google Scholar 

  10. Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137 (10):2196–2201

    CAS  Google Scholar 

  11. Clifford MN (1999) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372

    Article  CAS  Google Scholar 

  12. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  Google Scholar 

  13. Renouf M, Guy PA, Marmet C, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Dionisi F, Cavin C (2010) Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism. Mol Nutr Food Res 54 (6):760–766

    Article  CAS  Google Scholar 

  14. Clifford MN WJ (1976) The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. J Sci Food Agric 27(1):73–84

    Article  CAS  Google Scholar 

  15. Perrone D, Farah A, Donangelo CM, de Paulis T, Martin PR (2008) Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem 106:859–867

    Article  CAS  Google Scholar 

  16. Iziar A, Ludwig LS, B Caemmerer, LW Kroh, MP De Peñ, C Cid (2012) Extraction of coffee antioxidants: Impact of brewing time and method. Food Res Int 48 (1):57–64

    Article  CAS  Google Scholar 

  17. Dos Santos MD, Almeida MC, Lopes NP, De Souza GEP (2006) Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol Pharm Bull 29(11):2236

    Article  Google Scholar 

  18. Tsuchiya T, Suzuki O, Igarashi K (1996) Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci Biotechnol Biochem 60:765–801

    Article  CAS  Google Scholar 

  19. Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733

    CAS  Google Scholar 

  20. Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35(6):900–908

    Article  CAS  Google Scholar 

  21. Kwon S-H, Lee H-K, Kim J-A, Hong S-I, Kim H-C, Jo T-H, Park Y-I, Lee C-K, Kim Y-B, Lee S-Y (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1):210–217

    Article  CAS  Google Scholar 

  22. Lapchak PA (2007) The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: synergism with tissue plasminogen activator. Exp Neurol 205(2):407–413

    Article  CAS  Google Scholar 

  23. Suzuki A, Kagawa D, Ochiai R, Tokimitsu I, Saito I (2002) Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens Res 25(1):99–107

    Article  CAS  Google Scholar 

  24. Suzuki A, Fujii A, Yamamoto N, Yamamoto M, Ohminami H, Kameyama A, Shibuya Y, Nishizawa Y, Tokimitsu I, Saito I (2006) Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Lett 580 (9):2317–2322

    Article  CAS  Google Scholar 

  25. Onakpoya I, Terry R, Ernst E (2010) The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. Gastroenterol Res Pract 2011

  26. Suzuki A, Fujii A, Jokura H, Tokimitsu I, Hase T, Saito I (2008) Hydroxyhydroquinone interferes with the chlorogenic acid-induced restoration of endothelial function in spontaneously hypertensive rats. Am J hypertens 21(1):23–27

    Article  CAS  Google Scholar 

  27. Kanegae MP, da Fonseca LM, Brunetti IL, de Oliveira Silva S, Ximenes VF (2007) The reactivity of ortho-methoxy-substituted catechol radicals with sulfhydryl groups: contribution for the comprehension of the mechanism of inhibition of NADPH oxidase by apocynin. Biochem Pharmacol 74(3):457–464

    Article  CAS  Google Scholar 

  28. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1):136–138

    Article  CAS  Google Scholar 

  29. Kozuma K, Tsuchiya S, Kohori J, Hase T, Tokimitsu I (2005) Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens Res 28(9):711–718

    Article  CAS  Google Scholar 

  30. Watanabe T, Arai Y, Mitsui Y, Kusaura T, Okawa W, Kajihara Y, Saito I (2006) The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin Exp Hypertens 28(5):439–449

    Article  CAS  Google Scholar 

  31. Yamaguchi T, Chikama A, Mori K, Watanabe T, Shioya Y, Katsuragi Y, Tokimitsu I (2008) Hydroxyhydroquinone-free coffee: a double-blind, randomized controlled dose–response study of blood pressure. Nutr Metab Cardiovasc Dis 18 (6):408–414

    Article  CAS  Google Scholar 

  32. Ochiai R, Jokura H, Suzuki A, Tokimitsu I, Ohishi M, Komai N, Rakugi H, Ogihara T (2004) Green coffee bean extract improves human vasoreactivity. Hypertens Res 27(10):731–737

    Article  CAS  Google Scholar 

  33. Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, Croft KD, Hodgson JM (2012) Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agric Food Chem 60(36):9130–9136

    Article  CAS  Google Scholar 

  34. Revuelta-Iniesta R, Al-Dujaili E (2014) Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. BioMed Res Int 2014:482704. doi:10.1155/2014/482704

    Article  CAS  Google Scholar 

  35. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  Google Scholar 

  36. Dentali F, Squizzato A, Ageno W (2009) The metabolic syndrome as a risk factor for venous and arterial thrombosis. In: Seminars in thrombosis and hemostasis. vol 5. p 451

  37. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5 (6):493–506

    Article  CAS  Google Scholar 

  38. Taguchi K, Hida M, Matsumoto T, Ikeuchi-Takahashi Y, Onishi H, Kobayashi T (2014) Effect of short-term polyphenol treatment on endothelial dysfunction and thromboxane A2 levels in streptozotocin-induced diabetic mice. Biol Pharm Bull 37:1056–1061

    Article  CAS  Google Scholar 

  39. Suzuki A, Yamamoto N, Jokura H, Yamamoto M, Fujii A, Tokimitsu I, Saito I (2006) Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J Hypertens 24(6):1065–1073

    Article  CAS  Google Scholar 

  40. Cheong JLK, Croft K, Henry P, Matthews V, Hodgson J, Ward N (2014) Green coffee polyphenols do not attenuate features of the metabolic syndrome and improve endothelial function in mice fed a high fat diet. Arch Biochem Biophys 559:46–52

    Article  CAS  Google Scholar 

  41. Taguchi K, Hida M, Matsumoto T, Ikeuchi-Takahashi Y, Onishi H, Kobayashi T (2014) Effect of short-term polyphenol treatment on endothelial dysfunction and thromboxane A2 levels in streptozotocin-induced diabetic mice. Biol Pharm Bull 37(6):1056–1061

    Article  CAS  Google Scholar 

  42. Kanno Y, Watanabe R, Zempo H, Ogawa M, Suzuki J-i, Isobe M (2012) Chlorogenic Acid attenuates ventricular remodeling after myocardial infarction in mice. Int Heart J 54(3):176–180

    Article  Google Scholar 

  43. McDowell IF, Lang D (2000) Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr 130(2):369S–372S

    CAS  Google Scholar 

  44. Olthof MR, Hollman PC, Zock PL, Katan MB (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73(3):532–538

    CAS  Google Scholar 

  45. Rodriguez de Sotillo DV, Hadley M (2002) Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 13(12):717–726

    Article  CAS  Google Scholar 

  46. Goldstein JL, Ho Y, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci 76(1):333–337

    Article  CAS  Google Scholar 

  47. Yukawa G, Mune M, Otani H, Tone Y, Liang X-M, Iwahashi H, Sakamoto W (2004) Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. BioChemistry 69(1):70–74

    CAS  Google Scholar 

  48. Bagdas D, Cam Etoz B, Inan Ozturkoglu S, Cinkilic N, Ozyigit MO, Gul Z, Isbil Buyukcoskun N, Ozluk K, Gurun MS (2014) Effects of systemic chlorogenic acid on random-pattern dorsal skin flap survival in diabetic rats. Biol Pharm Bull 37(3):361–370

    Article  CAS  Google Scholar 

  49. Huang K, Liang Xc, Zhong Yl, He Wy, Wang Z (2014) 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J Sci Food Agric 95:1903–1910

    Article  CAS  Google Scholar 

  50. Panchal SK, Poudyal H, Waanders J, Brown L (2012) Coffee extract attenuates changes in cardiovascular and hepatic structure and function without decreasing obesity in high-carbohydrate, high-fat diet-fed male rats. J Nutr 142(4):690–697

    Article  CAS  Google Scholar 

  51. Zhang L, Chang C, Liu Y, Chen Z (2011) Effect of chlorogenic acid on disordered glucose and lipid metabolism in db/db mice and its mechanism. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae 33 (3):281–286

    Google Scholar 

  52. Li S-Y, Chang C-Q, Ma F-Y, Yu C-L (2009) Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed Environ Sci 22(2):122–129

    Article  CAS  Google Scholar 

  53. Wan CW, Wong CNY, Pin WK, Wong MHY, Kwok CY, Chan RYK, Yu PHF, Chan SW (2013) Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res 27(4):545–551

    Article  CAS  Google Scholar 

  54. Karthikesan K, Pari L, Menon V (2010) Antihyperlipidemic effect of chlorogenic acid and tetrahydrocurcumin in rats subjected to diabetogenic agents. Chem Biol Interact 188 (3):643–650

    Article  CAS  Google Scholar 

  55. Frank J, Kamal-Eldin A, Razdan A, Lundh T, Vessby B (2003) The dietary hydroxycinnamate caffeic acid and its conjugate chlorogenic acid increase vitamin E and cholesterol concentrations in Sprague–Dawley rats. J Agric Food Chem 51(9):2526–2531

    Article  CAS  Google Scholar 

  56. Mubarak A, Hodgson JM, Considine MJ, Croft KD, Matthews VB (2013) Supplementation of a high-fat diet with chlorogenic acid is associated with insulin resistance and hepatic lipid accumulation in mice. J Agric Food Chem 61(18):4371–4378

    Article  CAS  Google Scholar 

  57. Lecoultre V, Carrel G, Egli L, Binnert C, Boss A, MacMillan EL, Kreis R, Boesch C, Darimont C, Tappy L (2014) Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. Am J Clin Nutr 99(2):268–275

    Article  CAS  Google Scholar 

  58. Kamtchouing P, Kahpui S, Dzeufiet P-DD, Tedong L, Asongalem E, Dimo T (2006) Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J Ethnopharmacol 104(3):306–309

    Article  CAS  Google Scholar 

  59. Lin WY, Xaiver Pi-Sunyer F, Chen CC, Davidson LE, Liu CS, Li TC, Wu MF, Li CI, Chen W, Lin CC (2011) Coffee consumption is inversely associated with type 2 diabetes in Chinese. Eur J Clin Invest 41(6):659–666

    Article  CAS  Google Scholar 

  60. Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28,812 postmenopausal women. Arch Intern Med 166(12):1311–1316

    Article  Google Scholar 

  61. Van Dam RM, Feskens EJ (2002) Coffee consumption and risk of type 2 diabetes mellitus. The Lancet 360(9344):1477–1478

    Article  Google Scholar 

  62. van Dam RM (2008) Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl Physiol Nutr Metab 33(6):1269–1283

    Article  CAS  Google Scholar 

  63. Battram DS, Arthur R, Weekes A, Graham TE (2006) The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. J Nutr 136(5):1276–1280

    CAS  Google Scholar 

  64. Battram D, Graham T, Dela F (2007) Caffeine’s impairment of insulin-mediated glucose disposal cannot be solely attributed to adrenaline in humans. J Physiol 583(3):1069–1077

    Article  CAS  Google Scholar 

  65. Thong FS, Derave W, Kiens B, Graham TE, Ursø B, Wojtaszewski JF, Hansen BF, Richter EA (2002) Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51(3):583–590

    Article  CAS  Google Scholar 

  66. Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22):2053–2063

    Article  Google Scholar 

  67. McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64(4):848–853

    Article  CAS  Google Scholar 

  68. Karthikesan K, Pari L, Menon VP (2010) Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 29(1):23–30

    Article  CAS  Google Scholar 

  69. Karthikesan K, Pari L, Menon VP (2010) Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2(2):134–142

    Article  CAS  Google Scholar 

  70. Pari L, Karthikesan K, Menon VP (2010) Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341(1–2):109–117

    Article  CAS  Google Scholar 

  71. Herling AW, Schwab D, Burger H-J, Maas J, Hammerl R, Schmidt D, Strohschein S, Hemmerle H, Schubert G, Petry S (2002) Prolonged blood glucose reduction in mrp-2 deficient rats (GY/TR-) by the glucose-6-phosphate translocase inhibitor S 3025. Biochim Biophys Acta (BBA)-Gen Subj 1569 (1):105–110

    Article  CAS  Google Scholar 

  72. Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RSdS, de Souza HM (2008) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26(3):320–328

    Article  CAS  Google Scholar 

  73. Van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, Van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32 (6):1023–1025

    Article  CAS  Google Scholar 

  74. Ahrens MJ, Thompson DL (2013) Effect of Emulin on blood glucose in type 2 diabetics. J Med Food 16(3):211–215

    Article  CAS  Google Scholar 

  75. Tousch D, Lajoix A-D, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G, Petit P (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 377(1):131–135

    Article  CAS  Google Scholar 

  76. Ong KW, Hsu A, Tan BKH (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PloS one 7(3):e32718

    Article  CAS  Google Scholar 

  77. Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85(9):1341–1351

    Article  CAS  Google Scholar 

  78. Shin JY, Sohn J, Park KH (2013) Chlorogenic acid decreases retinal vascular hyperpermeability in diabetic rat model. J Korean Med Sci 28(4):608–613

    Article  CAS  Google Scholar 

  79. Herling AW, Burger H-J, Schubert G, Hemmerle H, Schaefer H-L, Kramer W (1999) Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol 386(1):75–82

    Article  CAS  Google Scholar 

  80. Simon C, Herling AW, Preibisch G, Burger H-J (2000) Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys 373(2):418–428

    Article  CAS  Google Scholar 

  81. van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger H-J, Herling AW, Kuipers F, Meijer AJ, Reijngoud D-J (2001) Acute inhibition of hepatic glucose-6-phosphatase Does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats A PHARMACOLOGICAL STUDY WITH THE CHLOROGENIC ACID DERIVATIVE S4048. J Biol Chem 276(28):25727–25735

    Article  Google Scholar 

  82. Ma Y GM, Liu D (2015) Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice. Pharm Res 32(4):1200–1209

    Article  CAS  Google Scholar 

  83. Jung UJ, Lee M-K, Park YB, Jeon S-M, Choi M-S (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318(2):476–483

    Article  CAS  Google Scholar 

  84. Rodriguez de Sotillo DV, Hadley M, Sotillo JE (2006) Insulin receptor exon 11+/– is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J Nutr Biochem 17(1):63–71

    Article  CAS  Google Scholar 

  85. Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J (2011) Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol Nutr Metab 36(5):650–659

    Article  Google Scholar 

  86. Olthof MR, van Dijk AE, Deacon CF, Heine RJ, van Dam RM (2011) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones. Nutr Metab (Lond) 8 (10)

  87. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM (2007) The epidemiology of obesity. Gastroenterology 132(6):2087–2102

    Article  Google Scholar 

  88. Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83(3):674–680

    CAS  Google Scholar 

  89. Tunnicliffe JM, Shearer J (2008) Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl Physiol Nutr Metab 33(6):1290–1300

    Article  CAS  Google Scholar 

  90. Greenberg J, Axen K, Schnoll R, Boozer C (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes 29(9):1121–1129

    Article  CAS  Google Scholar 

  91. Narita Y, Inouye K (2009) Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas α-amylase isozymes I and II. J Agric Food Chem 57(19):9218–9225

    Article  CAS  Google Scholar 

  92. Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes, metabolic syndrome and obesity: targets and therapy 5:21

    CAS  Google Scholar 

  93. Flanagan J, Bily A, Rolland Y, Roller M (2014) Lipolytic activity of Svetol®, a decaffeinated green coffee bean extract. Phytother Res 28(6):946–948

    Article  CAS  Google Scholar 

  94. Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6(1):9

    Article  Google Scholar 

  95. Tanaka K, Nishizono S, Tamaru S, Kondo M, Shimoda H, Tanaka J, Okada T (2009) Anti-obesity and hypotriglyceridemic properties of coffee bean extract in SD rats. Food Sci Technol Res 15(2):147

    Article  CAS  Google Scholar 

  96. Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T (2005) Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotechnol Biochem 69(11):2219–2223

    Article  CAS  Google Scholar 

  97. Song SJ, Choi S, Park T (2014) Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid-Based Complement Alternat Med 2014:718379. doi:10.1155/2014/718379

    Google Scholar 

  98. Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48(3):937–943

    Article  CAS  Google Scholar 

  99. Dellalibera O, Lemaire B, Lafay S (2006) Le Svetol®, un extrait de café vert décaféiné, induit une perte de poids et augmente le ratio masse maigre sur masse grasse chez des volontaires en surcharge pondérale. Phytotherapie 4 (4):194–197

    Article  Google Scholar 

  100. Bakuradze T, Boehm N, Janzowski C, Lang R, Hofmann T, Stockis JP, Albert FW, Stiebitz H, Bytof G, Lantz I (2011) Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study. Mol Nutr Food Res 55 (5):793–797

    Article  CAS  Google Scholar 

  101. Kotyczka C, Boettler U, Lang R, Stiebitz H, Bytof G, Lantz I, Hofmann T, Marko D, Somoza V (2011) Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Mol Nutr Food Res 55 (10):1582–1586

    Article  CAS  Google Scholar 

  102. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  Google Scholar 

  103. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    Article  CAS  Google Scholar 

  104. Newmark HL (1985) A hypothesis for dietary components as blocking agents of chemical carcinogenesis: plant phenolics and pyrrole pigments.

  105. Mori H, Tanaka T, Sugie S, Yoshimi N, Kawamori T, Hirose Y, Ohnishi M (1997) Chemoprevention by naturally occurring and synthetic agents in oral, liver, and large bowel carcinogenesis. J Cell Biochem 67(S27):35–41

    Article  Google Scholar 

  106. Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H (2000) Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 38(5):467–471

    Article  CAS  Google Scholar 

  107. Hoelzl C, Knasmüller S, Wagner KH, Elbling L, Huber W, Kager N, Ferk F, Ehrlich V, Nersesyan A, Neubauer O (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res 54 (12):1722–1733

    Article  CAS  Google Scholar 

  108. Bakuradze T, Baum M, Eisenbrand G, Janzowski C (2011) 4.2 Coffee and coffee compounds are effective antioxidants in human cells and in vivo. In: Risk Assess Phytochem Food Novel Approach, pp 364–368

  109. Newmark H (1987) Plant phenolics as inhibitors of mutational and precarcinogenic events. Can J Physiol Pharmacol 65(3):461–466

    Article  CAS  Google Scholar 

  110. Stich HF, Rosin MP (1984) Naturally occurring phenolics as antimutagenic and anticarcinogenic agents. In: Nutritional and toxicological aspects of food safety. Springer, Berlin, pp 1–29

    Google Scholar 

  111. Mori H, Tanaka T, Shima H, Kuniyasu T, Takahashi M (1986) Inhibitory effect of chlorogenic acid on methylazoxymethanol acetate-induced carcinogenesis in large intestine and liver of hamsters. Cancer Lett 30(1):49–54

    Article  CAS  Google Scholar 

  112. Morishita Y, Yoshimi N, Kawabata K, Matsunaga K, Sugie S, Tanaka T, Mori H (1997) Regressive effects of various chemopreventive agents on azoxymethane-induced aberrant crypt foci in the rat colon. Cancer Sci 88(9):815–820

    CAS  Google Scholar 

  113. Matsunaga K, Katayama M, Sakata K, Kuno T, Yoshida K, Yamada Y, Hirose Y, Yoshimi N, Mori H (2002) Inhibitory effects of chlorogenic acid on azoxymethane-induced colon carcinogenesis in male F344 rats. Asian pac J cancer prev 3 (2):163–166

    Google Scholar 

  114. Tanaka T, Kojima T, Kawamori T, Wang A, Suzui M, Okamoto K, Mori H (1993) Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and ferulic acids. Carcinogenesis 14(7):1321–1325

    Article  CAS  Google Scholar 

  115. Tanaka T, Nishikawa A, Shima H, Sugie S, Shinoda T, Yoshimi N, Iwata H, Mori H (1990) Inhibitory effects of chlorogenic acid, reserpine, polyprenoic acid (E-5166), or coffee on hepatocarcinogenesis in rats and hamsters. In: Antimutagenesis and anticarcinogenesis mechanisms II. Springer, Berlin, pp 429–440

    Chapter  Google Scholar 

  116. Huang M-T, Smart RC, Wong C-Q, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48(21):5941–5946

    CAS  Google Scholar 

  117. Shimizu M, Yoshimi N, Yamada Y, Matsunaga K, Kawabata K, Hara A, Moriwaki H, Mori H (1999) Suppressive effects of chlorogenic acid on N-methyl-N-nitrosourea-induced glandular stomach carcinogenesis in male F344 rats. J Toxicol Sci 24(5):433–439

    Article  CAS  Google Scholar 

  118. Boettler U, Volz N, Pahlke G, Teller N, Kotyczka C, Somoza V, Stiebitz H, Bytof G, Lantz I, Lang R (2011) Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Mol Nutr Food Res 55 (5):798–802

    Article  CAS  Google Scholar 

  119. Bakuradze T, Lang R, Hofmann T, Eisenbrand G, Schipp D, Galan J, Richling E (2014) Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial. Eur J Nutr 54(1):149–56. doi:10.1007/s00394-014-0696-x

  120. Volz N, Boettler U, Winkler S, Teller N, Schwarz C, Bakuradze T, Eisenbrand G, Haupt L, Griffiths LR, Stiebitz H (2012) Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J Agric Food Chem 60(38):9631–9641

    Article  CAS  Google Scholar 

  121. Han J, Miyamae Y, Shigemori H, Isoda H (2010) Neuroprotective effect of 3, 5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 169(3):1039–1045

    Article  CAS  Google Scholar 

  122. Jang YJ, Kim J, Shim J, Kim C-Y, Jang J-H, Lee KW, Lee HJ (2013) Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav Brain Res 245:113–119

    Article  CAS  Google Scholar 

  123. Tu Q, Tang X, Hu Z (2005) Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory.

  124. Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R (2007) Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci 262(1):77–84

    Article  CAS  Google Scholar 

  125. Czok G, Lang K (1961) On the stimulating effect of chlorogenic acid. Arzneimittelforschung 11:448

    CAS  Google Scholar 

  126. Hach B, Heim F (1971) Comparative studieson the central stimulating effects of caffeie and chlorogenic acid in white mice. Arzneimittelforschung 2:23–25

    CAS  Google Scholar 

  127. Ohnishi R, Ito H, Iguchi A, Shinomiya K, Kamei C, Hatano T, Yoshida T (2006) Effects of chlorogenic acid and its metabolites on spontaneous locomotor activity in mice. Biosci Biotechnol Biochem 70(10):2560

    Article  CAS  Google Scholar 

  128. Tessarollo L (1998) Pleiotropic functions of neurotrophins in development. Cytokine Growth Factor Rev 9 (2):125–137

    Article  CAS  Google Scholar 

  129. Yamamoto M, Sobue G, Yamamoto K, Mitsuma T (1996) Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75 NGFR, TrkA, TrkB, and TrkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 21(8):929–938

    Article  CAS  Google Scholar 

  130. Behl C, Moosmann B (2002) Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. Free Radical Biol Med 33(2):182–191

    Article  CAS  Google Scholar 

  131. de Paulis T, Schmidt DE, Bruchey AK, Kirby MT, McDonald MP, Commers P, Lovinger DM, Martin PR (2002) Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter. Eur J Pharmacol 442(3):215–223

    Article  Google Scholar 

  132. Reyes-Izquierdo T, Nemzer B, Shu C, Huynh L, Argumedo R, Keller R, Pietrzkowski Z (2013) Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br J Nutr 110(03):420–425

    Article  CAS  Google Scholar 

  133. Cropley V, Croft R, Silber B, Neale C, Scholey A, Stough C, Schmitt J (2012) Does coffee enriched with chlorogenic acids improve mood and cognition after acute administration in healthy elderly? A pilot study. Psychopharmacology (Berl) 219(3):737–749

    Article  CAS  Google Scholar 

  134. Camfield DA, Silber BY, Scholey AB, Nolidin K, Goh A, Stough C (2013) A randomised placebo-controlled trial to differentiate the acute cognitive and mood effects of chlorogenic acid from decaffeinated coffee. PloS One 8(12):e82897

    Article  CAS  Google Scholar 

  135. Shen W, Qi R, Zhang J, Wang Z, Wang H, Hu C, Zhao Y, Bie M, Wang Y, Fu Y (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull 88(5):487–494

    Article  CAS  Google Scholar 

  136. Lee K, Lee J-S, Jang H-J, Kim S-M, Chang MS, Park SH, Kim KS, Bae J, Park J-W, Lee B (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 689(1):89–95

    Article  CAS  Google Scholar 

  137. Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 661(1):18–24

    Article  CAS  Google Scholar 

  138. Jin U-H, Lee J-Y, Kang S-K, Kim J-K, Park W-H, Kim J-G, Moon S-K, Kim C-H (2005) A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: Isolation and identification from methanol extract of Euonymus alatus. Life Sci 77(22):2760–2769

    Article  CAS  Google Scholar 

  139. Li Y, Shi W, Li Y, Zhou Y, Hu X, Song C, Ma H, Wang C, Li Y (2008) Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environ Toxicol Pharmacol 26(1):13–21

    Article  CAS  Google Scholar 

  140. Moreira MEdC, Pereira RGFA, Dias DF, Gontijo VS, Vilela FC, de Moraes GdOI, Giusti-Paiva A, dos Santos MH (2013) Anti-inflammatory effect of aqueous extracts of roasted and green Coffea arabica L. J Funct Foods 5(1):466–474

    Article  CAS  Google Scholar 

  141. Chauhan PS, Satti NK, Sharma P, Sharma VK, Suri KA, Bani S (2012) Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis. Phytother Res 26(8):1156–1165

    Article  CAS  Google Scholar 

  142. Krakauer T (2002) The polyphenol chlorogenic acid inhibits staphylococcal exotoxin-induced inflammatory cytokines and chemokines. Immunopharmacol Immunotoxicol 24(1):113–119

    Article  CAS  Google Scholar 

  143. Yonathan M, Asres K, Assefa A, Bucar F (2006) In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa. J Ethnopharmacol 108(3):462–470

    Article  CAS  Google Scholar 

  144. Marrassini C, Acevedo C, Miño J, Ferraro G, Gorzalczany S (2010) Evaluation of antinociceptive, antinflammatory activities and phytochemical analysis of aerial parts of Urtica urens L. Phytother Res 24(12):1807–1812

    Article  CAS  Google Scholar 

  145. Gorzalczany S, Marrassini C, Miño J, Acevedo C, Ferraro G (2011) Antinociceptive activity of ethanolic extract and isolated compounds of Urtica circularis. J Ethnopharmacol 134(3):733–738

    Article  CAS  Google Scholar 

  146. Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurun MS (2013) Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J Nat Med 67(4):698–704

    Article  CAS  Google Scholar 

  147. Hara K, Haranishi Y, Kataoka K, Takahashi Y, Terada T, Nakamura M, Sata T (2013) Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol. doi:10.1016/j.ejphar.2013.10.046

    Google Scholar 

  148. Qu Z-W, Liu T-T, Qiu C-Y, Li J-D, Hu W-P (2014) Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 567:35–39

    Article  CAS  Google Scholar 

  149. Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I, Umeda T, Wakabayashi K, Imanishi K, Nishikawa H (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54(8):823–829

    Article  CAS  Google Scholar 

  150. La Vecchia C (2005) Coffee, liver enzymes, cirrhosis and liver cancer. J Hepatol 42(4):444–446

    Article  CAS  Google Scholar 

  151. Basnet P, Matsushige K, Hase K, Kadota S, Namba T (1996) Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol Pharm Bull 19 (11):1479–1484

    Article  CAS  Google Scholar 

  152. Wang G-F, Shi L-P, Ren Y-D, Liu Q-F, Liu H-F, Zhang R-J, Li Z, Zhu F-H, He P-L, Tang W (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res 83(2):186–190

    Article  CAS  Google Scholar 

  153. MATSUI Y, SHIBATA H (1998) Iron chelation by chlorogenic acid as a natural antioxidant. Biosci Biotechnol Biochem 62(1):22–27

    Article  Google Scholar 

  154. Kapil A, Koul I, Suri O (1995) Antihepatotoxic effects of chlorogenic acid from Anthocephalus cadamba. Phytother Res 9(3):189–193

    Article  CAS  Google Scholar 

  155. Xu Y, Chen J, Yu X, Tao W, Jiang F, Yin Z, Liu C (2010) Protective effects of chlorogenic acid on acute hepatotoxicity induced by lipopolysaccharide in mice. Inflamm Res 59(10):871–877

    Article  CAS  Google Scholar 

  156. Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y (2014) Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. Environ Toxicol Pharmacol 37(3):1212–1220

    Article  CAS  Google Scholar 

  157. Koriem KM, Soliman RE (2014) Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine. J Toxicol. doi:10.1155/2014/583494

    Google Scholar 

  158. Akashi I, Kagami K, Hirano T, Oka K (2009) Protective effects of coffee-derived compounds on lipopolysaccharide/d-galactosamine induced acute liver injury in rats. J Pharm Pharmacol 61(4):473–478

    Article  CAS  Google Scholar 

  159. Yun N, Kang J-W, Lee S-M (2012) Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem 23(10):1249–1255

    Article  CAS  Google Scholar 

  160. Shi H, Dong L, Bai Y, Zhao J, Zhang Y, Zhang L (2009) Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats. Eur J Pharmacol 623(1):119–124

    Article  CAS  Google Scholar 

  161. Di Paola R, Esposito E, Mazzon E, Caminiti R, Toso RD, Pressi G, Cozzocrea S (2010) 3, 5-Dicaffeoyl-4-malonylquinic acid reduced oxidative stress and inflammation in a experimental model of inflammatory bowel disease. Free Radic Res 44(1):74–89

    Article  CAS  Google Scholar 

  162. Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M (2015) Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 168:167–175. doi:10.1016/j.foodchem.2014.06.100

    Article  CAS  Google Scholar 

  163. Ruan Z, Liu S, Zhou Y, Mi S, Liu G, Wu X, Yao K, Assaad H, Deng Z, Hou Y (2014) Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

  164. George SE, Ramalakshmi K, Mohan Rao LJ (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48(5):464–486

    Article  CAS  Google Scholar 

  165. Kim C, Yu HG, Sohn J (2010) The anti-angiogenic effect of chlorogenic acid on choroidal neovascularization. Korean J Ophthalmol 24(3):163–168

    Article  Google Scholar 

  166. Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 140(1):1–8

    Article  Google Scholar 

  167. SOTILLO DR, Hadley M, WOLF-HALL C (1998) Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity. Journal of food science 63(5):907–910

    Article  Google Scholar 

  168. Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20(7):709–711

    Article  CAS  Google Scholar 

  169. Surh Y-J, Kundu JK, Na H-K, Lee J-S (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135(12):2993 S–3001 S

    CAS  Google Scholar 

  170. Thomson AW, Lotze MT (2003) The Cytokine Handbook, Two-Volume Set. Gulf Professional Publishing, USA

    Google Scholar 

  171. Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286(3):1122–1128

    CAS  Google Scholar 

Download references

Acknowledgements

Funding for this review was provided by the Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Enck.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, N., Tajik, M., Mack, I. et al. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56, 2215–2244 (2017). https://doi.org/10.1007/s00394-017-1379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1379-1

Keywords

Navigation