Skip to main content
Log in

Structure of Hot Strange Quark Stars: an NJL Model Approach at Finite Temperature

  • Published:
Astrophysics Aims and scope

In this paper, we investigated the thermodynamic properties of strange quark matter using the Nambu-Jona-Lasinio (NJL) model at finite temperatures where we considered the dynamical mass as the effective interaction between quarks. By considering the pressure of strange quark matter (SQM) at finite temperatures, we showed that the equation of state of this system gets stiffer with increasing temperature. In addition, we investigated the energy conditions and stability of the equation of state and showed that the equation of state of SQM satisfies the conditions of stability. Finally, we computed the structure properties of hot strange quark stars (SQS) including the gravitational mass, radius, Schwarzschild radius, average density, compactness, and gravitational redshift. Our calculations showed that in this model, the maximum mass and radius of SQS increase with increasing temperature. Furthermore it was shown that the average density of SQS is greater than the normal nuclear density, and it is an increasing function of temperature. We also discussed the temperature dependence of the maximum gravitational mass calculated by different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, Phys. Lett., 8, 214, 1964.

    Article  ADS  Google Scholar 

  2. G. Zweig, Cern-Reports, TH-401, TH-412, 1964.

  3. R. L. Jaffe, Phys. Rev. Lett., 38, 195, 617E, 1977.

    Article  ADS  Google Scholar 

  4. S. A. Chin and A. K. Kerman, Phys. Rev. Lett., 43, 1292, 1979.

    Article  ADS  Google Scholar 

  5. E. Witten, Phys. Rev., D30, 272, 1984.

  6. N. Itoh, Prog. Theor. Phys., 44, 291, 1970.

    Article  ADS  Google Scholar 

  7. A. R. Bodmer, Phys. Rev., D4, 1601, 1971.

  8. K. Sato and H. Suzuki, Phys. Rev. Lett., 58, 2722, 1987.

    Article  ADS  Google Scholar 

  9. H. Suzuki and K. Sato, Perprint, UTAP, 53/87, 1987.

  10. T. Hatsuda, Mod. Phys. Lett., A2, 805, 1987.

    Article  ADS  Google Scholar 

  11. M. Prakash, J. M. Lattimer, A. W. Steiner et al., Nucl. Phys., A715, 835, 2003.

    Article  ADS  Google Scholar 

  12. H. W. Yu, R. X. Xu, Res. Astron. Astrophys., 11, 471, 2010.

    Google Scholar 

  13. J. D. Carroll, D. B. Leinweber, A. W. Thomas et al., Phys. Rev., C79, 045810, 2009.

    Google Scholar 

  14. A. Chodos, R. L. Jaffe, K. Johnson et al., Phys. Rev., D9, 3471, 1974.

    ADS  Google Scholar 

  15. M. Alford, M. Braby, M. Paris et al., Astrophys. J., 626, 969, 2005.

    Article  ADS  Google Scholar 

  16. B. Freedman and L. Mclerran, Phys. Rev., D16, 1130, 1977.

    ADS  Google Scholar 

  17. G. H. Bordbar and A. Peivand, Res. Astron. Astrophys., 11, 851, 2011.

    Article  ADS  Google Scholar 

  18. G.H.Bordbar, A.Poostforush, A.Zamani, Astrophysics, 54, 277, 2011.

    Article  ADS  Google Scholar 

  19. G. H. Bordbar, H. Bahri, and F. Kayanikhoo, Res. Astron. Astrophys., 12, 1280, 2012.

    Article  ADS  Google Scholar 

  20. G. H. Bordbar, F. Kayanikhoo, and H. Bahri, Iran. J. Sci. Tech., A37, 165, 2013.

    Google Scholar 

  21. G. H. Bordbar, and Z. Alizadeh, Astrophysics, 57, 130, 2014.

  22. G. H. Bordbar, M. Bigdeli, and T. Yazdizadeh, Int. J. Mod. Phys., A21, 5991, 2006.

    Article  ADS  Google Scholar 

  23. T. Yazdizadeh and G. H. Bordbar, Res. Astron. Astrophys., 11, 471, 2011.

    Article  ADS  Google Scholar 

  24. G. H. Bordbar and B. Ziaei, Res. Astron. Astrophys., 12, 540, 2012.

    Article  ADS  Google Scholar 

  25. Y. Nambu and G. Jona-Lasinio, Phys. Rev., 122, 345, 1961.

    Article  ADS  Google Scholar 

  26. S. P. Klevanski, Rev. Mod. Phys., 64, 3, 1992.

  27. U. Vogl and W. Weise, Prog. Part. Nucl. Phys., 27, 195, 1991.

    Article  ADS  Google Scholar 

  28. M. Buballa, Phys. Rep., 407, 205, 2005.

    Article  ADS  Google Scholar 

  29. K. Schertler, S. Leupold, and J. Schaffner-Bielich, Phys. Rev., C60, 025801, 1999.

    Google Scholar 

  30. G. X. Peng, H. C. Chiang, J. J. Yang et al., Phys. Rev., C61, 015201, 1999.

    Google Scholar 

  31. G. Y. Shao, M. Di Toro, B. Liu et al., Phys. Rev., D83, 094033, 2011.

    ADS  Google Scholar 

  32. M. R. Pennington, J. Phys. Conf. Ser., 18, 1, 2005.

    Article  ADS  Google Scholar 

  33. S. Raha, AIP Conference Proceedings, 508, 226, 2000.

    Article  ADS  Google Scholar 

  34. S. B. Ruster, V. Werth, M. Buballa et al., Phys. Rev., D73, 034025, 2006.

    ADS  Google Scholar 

  35. K. Nakazato, K. Sumiyosh, and S. Yamada, Phys. Rev., D77, 103006, 2008.

    ADS  Google Scholar 

  36. K. Nakazato, K. Sumiyosh, and S. Yamada, Astrophys. J., 721, 1284, 2010.

    Article  ADS  Google Scholar 

  37. K. Nakazato, K. Sumiyosh, and S. Yamada, Astron. Astrophys., A50, 558, 2013.

    Google Scholar 

  38. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev., 55, 374, 1939.

    Article  ADS  Google Scholar 

  39. P. Chu, X. Li, B. Wang et al., Eur. Phys. J., C77, 512, 2017.

    Article  ADS  Google Scholar 

  40. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron stars 1: Equation of state and structure, Springer, 2007.

  41. A. Burrows and J. P. Ostriker, Proc. Nat. Acad. Sci., 111, 2409, 2014.

    Article  ADS  Google Scholar 

  42. A. G. Alaverdyan and G. S. Hajyan, J. Phys. Conf. Ser., 496, 012005, 2014.

    Article  Google Scholar 

  43. M. Bagchi, S. Ray, M. Dey et al., Astron. Astrophys., 450, 431, 2006.

    Article  ADS  Google Scholar 

  44. V. Dexheimer, J. R. Torres, and D. P. Menezes, Eur. Phys. J., C73, 2569, 2013.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Bordbar.

Additional information

Published in Astrofizika, Vol. 62, No. 2, pp. 313-328 (June 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, G.H., Hosseini, R., Kayanikhoo, F. et al. Structure of Hot Strange Quark Stars: an NJL Model Approach at Finite Temperature. Astrophysics 62, 276–290 (2019). https://doi.org/10.1007/s10511-019-09580-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09580-9

Keywords

Navigation