Skip to main content
Log in

Ionospheric response of St. Patrick’s Day geomagnetic storm over Indian low latitude regions

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The current work shows the ionospheric response to an intense geomagnetic storm known as St. Patrick’s Day storm which occurred from 17-22 March 2015 using the ionospheric vertical total electron content data over the low latitude Indian stations. We have tried to study how it has influenced the vertical total electron content at four different low latitude stations: Varanasi (Geographic latitude 25°, 19’ N, longitude 82°, 59’ E), Lucknow (Geographic latitude 26°, 50’ N, longitude 80°, 55’ E), Bangalore (Geographic latitude 12°, 58’ N, longitude 77°, 35’ E), and Hyderabad (Geographic latitude 17°, 23’ N, longitude 78°, 27’ E). Various solar and geomagnetic parameters related to the geomagnetic storm have been analyzed to examine the consequences of geomagnetic storms on vertical total electron content. The analysis has been done on account of a comparison of mean total electron content estimated for geomagnetic quiet days and those during the period of the geomagnetic storm 17-21 March 2015. Analysis of vertical total electron content data during the storm period found a negative storm effect on 18 March during daytime at equatorial ionization anomaly station (Varanasi & Lucknow) and Positive storm effect at equatorial station (Hyderabad and Bangalore) which is in agreement with the results of Fagundes et al. (2015) reported in Brazil region. A strong positive storm effect in the daytime is noticed at EIA stations during 20-21 March which is higher at Lucknow (∼63 TECU) than that at Varanasi (∼37 TECU) whereas equatorial stations Bangalore and Hyderabad were found unaffected. The same results have also been reflected from total electron content data of single PRN 17. These positive and negative ionospheric storm effects observed during the geomagnetic storm have been explained using disturb dynamo electric field, prompt penetration electric field and neutral wind effects. The St. Patrick’s Day storm resulted in a minimum Disturbance Storm Time Index of −234 nT, Auroral Electrojet enhancement of up to 1000 nT, and a maximum enhancement of 33 percent of vertical total electron content (VTEC) values at Bangalore, an equatorial region, in comparison to average quiet days’ VTEC. This is known as the positive storm effect. The cohabitation of the prompt penetration electric field and the long-lasting disturbance dynamo electric field has caused the VTEC to respond favorably throughout the region and disturb dynamo electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The geomagnetic data are freely available at Kyoto website (https://wdc.kugi.kyotou.ac.jp/) as well as at Omni website (https://omniweb.gsfc.nasa.gov/form/dx1.HTML).

References

  • Ackroyd, N., Lorimer, R.: A GPS User’s Guide. Lloyd’s of London Press, London (1990)

    Google Scholar 

  • Abdu, M.A., Maruyama, T., Batista, I.S., Saito, S., Nakamura, M.: Ionospheric responses to the October 2003 superstorm: longitude/local time effects over equatorial low and middle latitudes. J. Geophys. Res. 112, A10306 (2007)

    ADS  Google Scholar 

  • Adebesin, B.O., Adeniyi, J.O., Adimula, I.A., Reinisch, B.W.: Equatorial vertical plasma drift velocities and electron densities inferred from ground-based ionosonde measurements during low solar activity. J. Atmos. Sol.-Terr. Phys. 97, 58–64 (2013)

    Article  ADS  Google Scholar 

  • Adekoya, B.J., Adebesin, B.O.: Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and midlatitudes. Acta Geophys. 63(4), 1150–1180 (2015)

    Article  ADS  Google Scholar 

  • Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., David, T.W.: On the effects of geomagnetic storms and pre-storm phenomena on low and middle latitude ionospheric F2. Astrophys. Space Sci. 340(2), 217–235 (2012a)

    Article  ADS  Google Scholar 

  • Adekoya, B.J., Chukwuma, V.U., Bakare, N.O., David, T.W.: Effects of geomagnetic storm on middle latitude ionospheric F2 variations during storm of April (2–6), 2004. Indian J. Radio Space Phys. 41(6), 606–616 (2012b).

    Google Scholar 

  • Adekoya, B.J., Chukwuma, V.U., Salako, S.A.: On the coexistence of positive and negative ionospheric storm during geomagnetic storms and pre-storm phenomena on low and low-mid latitude. In: Book of Proceedings of 5th Annual Conference of the Nigeria Union of Radio Science (NURS) an Affiliate of International Union of Radio Science Nigeria (URSI), pp. 15–28 (2013)

    Google Scholar 

  • Adekoya, B.J., Chukwuma, V.U.: Classification and quantification of solar wind driver gases leading to intense geomagnetic storms. Adv. Space Res. 61(1), 274–286 (2018)

    Article  ADS  Google Scholar 

  • Adhikari, B., Dahal, S., Sapkota, N., Baruwal, P., Bhattarai, B., Khanal, K., Chapagain, N.P.: Field-aligned current and polar cap potential and geomagnetic disturbances: a review of cross-correlation analysis. Earth Space Sci. 5, 440–455 (2018).

    Article  ADS  Google Scholar 

  • Agnew, D.C., Larson, K.M.: Finding the repeat times of the GPS constellation. GPS Solut. 11(1), 71–76 (2007)

    Article  Google Scholar 

  • Amaechi, P.O., Oyeyemi, E.O., Akala, A.O.: The response of African equatorial/low-latitude ionosphere to 2015 St. Patrick’s Day geomagnetic storm. Space Weather 16, 601–618 (2018)

    Article  ADS  Google Scholar 

  • Ansari, K., Park, K.D., Panda, S.K.: Empirical orthogonal function analysis and modeling of ionospheric TEC over South Korean region. Acta Astronaut. 161, 313–324 (2019)

    Article  ADS  Google Scholar 

  • Appleton, E.V.: Two anomalies in the ionosphere. Nature 157, 691 (1946)

    Article  ADS  Google Scholar 

  • Ariyibin, E.A., Olabode, A.O.: Geomagnetic storm main phase effect on the equatorial ionosphere over Ile-Ife as measured from GPS observations. Sci. Afr. 9, e00472 (2020)

    Google Scholar 

  • Astafyeva, E., Zakharenkova, I., Förster, M.: Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J. Geophys. Res. Space Phys. 120, 9023–9037 (2015)

    Article  ADS  Google Scholar 

  • Bagiya, M.S., Joshi, H.P., Iyer, K.N., Aggarwal, M., Ravindran, S., Pathan, B.M.: TEC variations during low solar activity period (2005–2007) near the Equatorial Ionospheric Anomaly Crest region in India. Ann. Geophys. 27, 1047–1057 (2009)

    Article  ADS  Google Scholar 

  • Balan, N., Bailey, G.J.: Equatorial plasma fountain and its effects: possibility of an additional layer. J. Geophys. Res. Space Phys. 100(A11), 21421–21432 (1995)

    Article  ADS  Google Scholar 

  • Balan, N., Otsuka, Y., Nishioka, M., Liu, J.Y., Bailey, G.J.: Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Phys. 118, 2660–2669 (2013)

    Article  ADS  Google Scholar 

  • Balan, N., Liu, L.B., Le, H.J.: A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2(4), 1–19 (2018)

    Article  ADS  Google Scholar 

  • Basu, S., Basu, S., Makela, J.J., MacKenzie, E., Doherty, P., Wright, J.W., Rich, F., Keskinen, M.J., Sheehan, R.E., Custer, A.J.: Large magnetic storm-induced night-time ionospheric flows at midlatitudes and their impacts on GPS-based navigation systems. J. Geophys. Res. 113(A3), A00A06 (2008)

    ADS  Google Scholar 

  • Bauske, R., Prolss, G.W.: Modelling the ionospheric response to travelling atmospheric disturbances. J. Geophys. Res. 102, 14,555–14,562 (1997)

    Article  ADS  Google Scholar 

  • Blagoveshchensky, D.V., Kalishin, A.S.: Increase in the critical frequency of the ionospheric F region prior to the substorm expansion phase. Geomagn. Aeron. 49(2), 200–209 (2009)

    Article  ADS  Google Scholar 

  • Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1686 (1980)

    Article  ADS  Google Scholar 

  • Bolaji, O., Owolabi, O., Falayi, E., Jimoh, E., Kotoye, A., Odeyemi, O., Rabiu, B., Doherty, P., Yizengaw, E., Yamazaki, Y., Adeniyi, J., Kaka, R., Onanuga, K.: Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum. Ann. Geophys. 35, 123–132 (2017)

    Article  ADS  Google Scholar 

  • Bolaji, O.S., Adekoya, B.J., Adebiyi, S.J., et al.: The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015. Astrophys. Space Sci. 367, 1 (2022)

    Article  ADS  Google Scholar 

  • Buonsanto, M.J.: Ionospheric storms—a review. Space Sci. Rev. 88, 563–601 (1999)

    Article  ADS  Google Scholar 

  • Chakraborty, M., Kumar, S., De, B.K., et al.: Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. J. Earth Syst. Sci. 124, 1115–1126 (2015)

    Article  ADS  Google Scholar 

  • Chen, W., Gao, S., Hu, C., Chen, Y., Ding, X.: Effects of ionospheric disturbances on GPS observation in low latitude area. GPS Solut. 12(1), 33–41 (2008)

    Article  Google Scholar 

  • Coco, D.: GPS satellites of opportunity for ionospheric monitoring. GPS World 47 (1991)

  • D’Angelo, G., Piersanti, M., Alfonsi, L., Spogli, L., Clausen, L.B.N., Coco, I., Li, G., Baiqi, N.: The response of high latitude ionosphere to the 2015 St. Patrick’s Day storm from insitu and ground-based observations. Adv. Space Res. 62(3), 638–650 (2018)

    Article  ADS  Google Scholar 

  • Danilov, A.D.: Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 52(3), 343–366 (2013)

    Article  ADS  Google Scholar 

  • Danilov, A.D., Konstantinova, A.V.: Ionospheric precursors of geomagnetic storms. 1. A review of the problem. Geomagn. Aeron. 59(5), 554–566 (2019a)

    Article  ADS  Google Scholar 

  • Danilov, A.D., Konstantinova, A.V.: Behavior of the ionospheric F region prior to geomagnetic storms. Adv. Space Res. 64, 1375–1387 (2019b)

    Article  ADS  Google Scholar 

  • Dabas, R.S., Bhuyan, P.K., Tyagi, T.R., Bhardwaj, R.J., Lal, J.B.: Day to-day changes in ionospheric electron content at low latitudes. Radio Sci. 19, 749–756 (1984)

    Article  ADS  Google Scholar 

  • Dashora, N., Sharma, N., Dabas, R.S., Alex, S., Pandey, R.: Large Enhancement, in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone. Ann. Geophys. 27, 1803–1820 (2009)

    Article  ADS  Google Scholar 

  • Davies, K., Hartmann, G.K.: Studying the ionosphere with Global Positioning System. Radio Sci. 32, 1695–1703 (1997)

    Article  ADS  Google Scholar 

  • de Abreu, A.J., et al.: Hemispheric asymmetries in the ionospheric response observed in the American sector during an intense geomagnetic storm. J. Geophys. Res. 115, A12312 (2010)

    ADS  Google Scholar 

  • de Abreu, A.J., Fagundes, P.R., Gende, M., Bolaji, O.S., de Jesus, R., Brunini, C.: Investigation of ionospheric response to two moderate geomagnetic storms using GPS-TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. Space Res. 53(9), 1313–1328 (2014)

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T.: Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤−250 nT) during solar cycle 23. Geophys. Res. Lett. 35(6), L06S03 (2008)

    Article  Google Scholar 

  • Fagundes, P.R., Goncharenko, L.P., de Abreu, A.J., Venkatesh, K., Pezzopane, M., de Jesus, R., Gende, M., Coster, A.J., Pillat, V.G.: Ionospheric response to the 2009 sudden stratospheric warming over the equatorial, low, and middle latitudes in the South American sector. J. Geophys. Res. Space Phys. 120, 7889–7902 (2015)

    Article  ADS  Google Scholar 

  • Fagundes, P.R., Cardoso, F.A., Fejer, B.G., Venkatesh, K., Ribeiro, B.A.G., Pillat, V.G.: Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 121, 5613–5625 (2016)

    Article  ADS  Google Scholar 

  • Fejer, B.G., Scherliess, L.: Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102(A11), 24,047–24,056 (1997)

    Article  ADS  Google Scholar 

  • Fejer, B.G.: The equatorial ionospheric electric fields. A review. J. Atmos. Terr. Phys. 43, 377–386 (1981).

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T.M., Miillward, G.H., Richmond, A.D., Codrescu, M.V.: Storm time changes in the upper atmosphere at low latitudes. J. Atmos. Sol. Terr. Phys. 64, 1383–1391 (2002)

    Article  ADS  Google Scholar 

  • Galav, P., Sharma, S., Pandey, R.: Study of simultaneous penetration of electric fields and variation of total electron content in the day and night sectors during the geomagnetic storm of 23 May 2002. J. Geophys. Res. 116, A12324 (2011).

    ADS  Google Scholar 

  • Gonzalez, W.D., Clua de Gonzalez, A.L., Sobral, J.H.A., Dal Lago, A., Vieira, L.E.: Solar and interplanetary causes of very intense storms. J. Atmos. Sol.-Terr. Phys. 63, 403–412 (2001)

    Article  ADS  Google Scholar 

  • Goncharenko, L.P., Foster, J.C., Coster, A.J., Huang, C., Aponte, N., Paxton, L.J.: Observations of a positive storm phase on 10 September 2005. J. Atmos. Sol.-Terr. Phys. 69(10–11), 1253–1272 (2007)

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: What is a geomagnetic storm? J. Geophys. Res. 99(A4), 5771 (1994)

    Article  ADS  Google Scholar 

  • Hocke, K., Pavelyev, A.G.: General aspect of GPS data use for atmospheric science. Adv. Space Res. 27, 1313–1320 (2001)

    Article  ADS  Google Scholar 

  • Horvath, I., Lovell, B.C.: Formation and evolution of the ionospheric plasma density shoulder and its relationship to the superfountain effects investigated during the 6 November 2001 great storm. J. Geophys. Res. 113, A12315 (2008)

    ADS  Google Scholar 

  • Huang, C.S., Foster, J.C., Goncharenko, L.P., Erickson, P.J., Rideout, W., Coster, A.J.: A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network. J. Geophys. Res. 110, A06303 (2005)

    ADS  Google Scholar 

  • Huang, C.S., Sazykin, S., Chau, J.L., Maruyama, N., Kelley, M.C.: Penetration electric fields: efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 69(10–11), 1135–1146 (2007)

    Article  ADS  Google Scholar 

  • Ikubanni, S.O., Adebiyi, S.J., Adebesin, B.O., Dopamu, K.O., Joshua, B.W., Bolaji, O.S., Adekoya, B.J.: Response of GPS-TEC in the African equatorial region to the two recent St. Patrick’s Day storms. Int. J. Civ. Eng. Technol. 9(10), 1773–1790 (2018)

    Google Scholar 

  • Immel, T.J., Crowley, G., Craven, J.D., Roble, R.G.: Day side enhancements of thermospheric O/N2 following magnetic storm onset. J. Geophys. Res. 106, 15,471–15,488 (2001)

    Article  ADS  Google Scholar 

  • Jain, A., Tiwari, S., Jain, Sudhir., Gwal, A.K.: TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian J. Radio Space Phys. 39, 11–24 (2010)

    Google Scholar 

  • Joshi, S., Rao, K.: Influence of solar wind parameters on equatorial magnetic observatories during intense geomagnetic storms of the year 2015. J. Sci. Res. 12, 233–250.10.3329/jsr.v12i3.42798 (2020)

    Article  Google Scholar 

  • Kamide, Y., Kusano, K.: No major solar flares but the largest geomagnetic storm in the present solar cycle. Space Weather 13, 365–367 (2015)

    Article  ADS  Google Scholar 

  • Kelley, M.C., Fejer, B.G., Gonzales, C.A.: An explanation for anomalous equatorial ionospheric electric field associated with award turning of the interplanetary magnetic field. Geophys. Res. Lett. 6(4), 301 (1979)

    Article  ADS  Google Scholar 

  • Kikuchi, T., Hashimoto, K.K., Nozaki, K.: Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res. Space Phys. 113, A06214 (2008)

    Article  ADS  Google Scholar 

  • Kikuchi, T., Hashimoto, K.K.: Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit. Geosci. Lett. 3(1), 4 (2016)

    Article  ADS  Google Scholar 

  • Klobuchar, J.A.: Ionospheric effects on GPS. In: Parkinson, B.W., Spilker, J.J. (eds.) Global Positioning System: Theory and Applications, vol. 2. Progress in Astronautics and Aeronautics, vol. 164, p. 485 (1996).

    Google Scholar 

  • Kuai, J., Liu, L., Liu, J., Sripathi, S., Zhao, B., Chen, Y., Le, H., Hu, L.: Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 121, 9111–9126 (2016)

    Article  ADS  Google Scholar 

  • Kumar, S., Singh, A.K.: Storm time response of GPS- derived total electron content (TEC) during the low solar active period at low latitude station Varanasi. Astrophys. Space Sci. 331(2), 447–458 (2010)

    Article  ADS  Google Scholar 

  • Langley, R., Fedrizzi, M., Paula, E., Santos, M., Komjathy, A.: Mapping the low latitude ionosphere with GPS. GPS World 13(2), 41–46 (2002)

    Google Scholar 

  • Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., Aponte, N.: A dayside ionospheric positive storm phase driven by neutral winds. J. Geophys. Res. Space Phys. 113, A08304 (2008)

    Article  ADS  Google Scholar 

  • Liu, Z., Gao, Y., Skone, S.: A study of smoothed TEC precision inferred from GPS measurements. Earth Planets Space 57, 999–1007 (2005)

    Article  ADS  Google Scholar 

  • Liu, L., Wan, W., Zhang, M.-L., Zhao, B.: Case study on total electron content enhancements at low latitudes during ow geomagnetic activities before the storms. Ann. Geophys. 26(4), 893–903 (2008)

    Article  ADS  Google Scholar 

  • Liu, L., Chen, Y., Le, H., Kurkin, V.I., Polekh, N.M., Lee, C.-C.: The ionosphere under extremely prolonged low solar activity. J. Geophys. Res. 116, A04320 (2011)

    ADS  Google Scholar 

  • Mannucci, A.J., Wilson, B.D., Edwards, C.D.: A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. Paper presented at ION GPS-93, Inst. of Navig., Salt Lake City, Utah, 22–24 Sept. pp. 1323–1332 (1993)

  • Mansilla, G.A.: Ionospheric effects of an intense geomagnetic storm. Stud. Geophys. Geod. 51(4), 563–574 (2007)

    Article  ADS  Google Scholar 

  • Martyn, D.F.: Atmospheric Tides in the Ionosphere. I. Solar Tides in the F2 Region. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 189, 241–260 (1947)

    ADS  Google Scholar 

  • Mendillo, M.: Storms in the ionosphere: patterns and processes for total electron content. Rev. Geophys. 44, RG4001 (2006)

    Article  ADS  Google Scholar 

  • Mishra, R.K., Adhikari, B., Chapagain, N.P., Baral, R., Das, P.K., Klausner, V., Sharma, M.: Variation on solar wind parameters and total electron content over middle- to low-latitude regions during intense geomagnetic storms. Radio Sci. 55, e2020RS007129 (2020)

    Article  ADS  Google Scholar 

  • Mo, X.H., Zhang, D.H., Liu, J., Hao, Y.Q., Ye, J.F., Qin, J.S., Wei, W.X., Xiao, Z.: Morphological characteristics of equatorial ionization anomaly crest over Nanning region. Radio Sci. 53, 37–47 (2018)

    Article  ADS  Google Scholar 

  • Msganaw, A., Abraha, G., Tsegaye, K.: Solar activity and geomagnetic storm effects on GPS ionospheric TEC over Ethiopia. Momona Ethiopian J. Sci. 11, 276 (2019). https://doi.org/10.4314/mejs.v11i2.7

    Article  Google Scholar 

  • Nava, B., Rodríguez-Zuluaga, J., Alazo-Cuartas, K., Kashcheyev, A., Migoya-Orué, Y., Radicella, S.M., Amory-Mazaudier, C., Fleury, R.: Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 121, 3421–3438 (2016)

    Article  ADS  Google Scholar 

  • Olwendo, O., Cesaroni, C., Yamazaki, Y., Cilliers, P.: Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick’s Day storm. Adv. Space Res. 60, 1817–1826 (2017)

    Article  ADS  Google Scholar 

  • Patel, N.C., Karia, S.P., Pathak, K.N.G.PS-T.E.: Variation during low to high Solar activity period (2010-2014) under the Northern Crest of Indian equatorial ionization anomaly region. Positioning 8, 13–35 (2017)

    Article  Google Scholar 

  • Patra, A.K., Chaitanya, P.P., Dashora, N., Sivakandan, M., &Taori, A.: Highly localized unique electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm observed using multi-technique common-volume observations from Gadanki, India. J. Geophys. Res. Space Phys. 121(11), 11,518–11,527 (2016)

    Article  Google Scholar 

  • Paul, A., Kascheyev, A., Rodriguez-Bouza, M., Pathak, K., Ferreira, A.A., Shetti, D., Yao, J.N.: Latitudinal features of total electron content over the African and European longitude sector following the St. Patrick’s Day storm of 2015. Adv. Space Res. 61(7), 1890–1900 (2018)

    Article  ADS  Google Scholar 

  • Ram, S.T., et al.: Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J. Geophys. Res. Space Phys. 121, 538–548 (2016).

    Article  ADS  Google Scholar 

  • Ramsingh, Sripathi, S., Sreekumar, S., Banola, S., Emperumal, K., Tiwari, P., Kumar, B.S.: Low-latitude ionosphere response to the super geomagnetic storm of 17/18 March 2015: results from a chain of ground-based observations over Indian sector. J. Geophys. Res. Space Phys. 120, 10,864–10,882 (2015)

    Article  Google Scholar 

  • Rama Rao, P.V.S., Gopi Krishna, S., Vara Prasad, J., Prasad, S.N.V.S., Prasad, D.S.V.V.D., Niranjan, K.: Geomagnetic storm effects on GPS based navigation. Ann. Geophys. 27, 2101–2110 (2009)

    Article  ADS  Google Scholar 

  • Rao, G.S.: GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling. J. Earth Syst. Sci. 116(5), 407–411 (2007)

    Article  ADS  Google Scholar 

  • Ray, S., Roy, B., Paul, K.S., Goswami, S., Oikonomou, C., Haralambous, H., Chandel, B., Paul, A.: Study of the effect of 17-18 March 2015 geomagnetic storm on the Indian longitudes using GPS and C/NOFS. J. Geophys. Res. Space Phys. 122, 2551–2563 (2017)

    Article  ADS  Google Scholar 

  • Reddybattula, K.D., Panda, S.K., Ansari, K., Peddi, V.S.R.: Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronaut. 161, 283–292 (2019)

    Article  ADS  Google Scholar 

  • Richmond, A.D., Roble, R.G.: Dynamic effects of aurora-generated gravity waves on the mid-latitude ionosphere. J. Atmos. Terr. Phys. 41(7–8), 841–852 (1979)

    Article  ADS  Google Scholar 

  • Rishbeth, H., Mendillo, M.: Patterns of F2-layer variability. J. Atmos. Sol.-Terr. Phys. 63, 1661–1680 (2001)

    Article  ADS  Google Scholar 

  • Rishbeth, H., Fuller-Rowell, T.J., Rees, D.: Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study. Planet. Space Sci. 35, 1157–1165 (1987)

    Article  ADS  Google Scholar 

  • Sardon, E., Rius, A., Zarraoa, N.: Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci. 29(3), 577–586 (1994)

    Article  ADS  Google Scholar 

  • Sastri, J.H., Jyoti, N., Somayajulu, V.V., Chandra, H., Devasia, C.V.: Ionospheric storm of early November 1993 in the Indian equatorial region. J. Geophys. Res. 105, 18,443–18,455 (2000)

    Article  ADS  Google Scholar 

  • Sharma, S.K., Singh, A.K., Panda, S.K., Ahmed, S.S.: The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s Day storm. Astrophys. Space Sci. 365(2), 35 (2020)

    Article  ADS  Google Scholar 

  • Shreedevi, P.R., Choudhary, R.K., Thampi, S.V., Yadav, S., Pant, T.K., Yu, Y., McGranaghan, R., Thomas, E.G., Bhardwaj, A., Sinha, A.K.: Geomagnetic storm-induced plasma density enhancements in the southern polar ionospheric region: a comparative study using St. Patrick’s Day storms of 2013 and 2015. Space Weather 18, e2019SW002383 (2020)

    Article  ADS  Google Scholar 

  • Silwal, A., Gautam, S.P., Poudel, P., Karki, M., Adhikari, B., Chapagain, N.P., et al.: Global positioning system observations of ionospheric total electron content variations during the 15th January 2010 and \(21^{st}\) June 2020 solar eclipse. Radio Sci. 56, e2020RS007215 (2021)

    ADS  Google Scholar 

  • Singh, A., Rathore, V.S., Kumar, S., Rao, S.S., Singh, S.K., Singh, A.K.: Effect of intense geomagnetic storms on low-latitude TEC during the ascending phase of the solar cycle 24. J. Astrophys. Astron. 42(2), 99 (2021)

    Article  ADS  Google Scholar 

  • Sonnenberg, S.: In: Radio and Electronic Navigation, Chap. 7, 6th ed. Butterworth, Stoneham (1988)

    Google Scholar 

  • Spogli, L., et al.: Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 121, 12,211–12,233 (2016)

    Article  Google Scholar 

  • Srinivasu, V.K.D., Prasad, D.S.V.V.D., Niranjan, K., Seemala, G.K., &Venkatesh, K.: L-band scintillation and TEC variations on St. Patrick’s Day storm of 17 March 2015 over Indian longitudes using GPS and GLONASS observations. J. Earth Syst. Sci. 128(3), 69 (2019)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: The interplanetary causes of magnetic storms: a review. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, Y. (eds.) Geophysics Monograph Series, vol. 98, pp. 77–89. American Geophysical Union, Washington (1997)

    Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Gonzalez, W.D., Tang, F., Akasofu, S.I.: Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 93, 8517–8531 (1988)

    ADS  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Saito, A., Araki, T., Yumoto, K., Tsuda, T., Abdu, M.A., Sobral, J.H.A., Gonzalez, W.D., McCreadie, H., Lakhina, G.S., Vasyliunas, V.M.: Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. 113, A05311 (2008).

    ADS  Google Scholar 

  • Verkhoglyadova, O.P., Tsurutani, B.T., Mannucci, A.J., Mlynczak, M.G., Hunt, L.A., Paxton, L.J., Komjathy, A.: Solar wind driving of ionosphere thermosphere responses in three storms near St. Patrick’s Day in 2012, 2013, and 2015. J. Geophys. Res. Space Phys. 121, 8900–8923 (2016)

    Article  ADS  Google Scholar 

  • Wang, W., Lei, J., Burns, A.G., Solomon, S.C., Wiltberger, M., Xu, J., Zhang, Y., Paxton, L., Coster, A.: Ionospheric response to the initial phase of geomagnetic storms: common features. J. Geophys. Res. 115, A07321 (2010)

    ADS  Google Scholar 

  • Wanninger, L.: Effects of the Equatorial Ionosphere on GPS. GPS World 4(7), 48–52 (1993)

    ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: Effects of magnetic clouds on the occurrence of geomagnetic storms: the first 4 years of Wind. J. Geophys. Res. 107(A10), SMP19-1–SMP19-8 (2002a)

    Google Scholar 

  • Wu, C.-C., Lepping, R.P.: Effect of solar wind velocity on magnetic cloud associated magnetic 798 storm intensity. J. Geophys. Res. 107(A11), 1346 (2002b)

    Article  Google Scholar 

  • Wu, C.C., Lepping, R.P.: Statistical comparison of magnetic clouds and cloud-like structures during 1995–2012. Sol. Phys. 290, 1243–1269 (2015)

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: Relationships among geomagnetic storms, interplanetary shocks, magnetic clouds, and sunspot number during 1995–2012. Sol. Phys. 291, 265–284 (2016)

    Article  ADS  Google Scholar 

  • Zhang, S.-R., Erickson, P.J., Zhang, Y., Wang, W., Huang, C., Coster, A.J., Holt, J.M., Foster, J.F., Sulzer, M., Kerr, R.: Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 122, 1314–1337 (2017)

    Article  ADS  Google Scholar 

  • Zhang, W., Zhao, X., Jin, S., Li, J.: Ionospheric disturbances following the March 2015 geomagnetic storm from GPS observations in China. Geodesy Geodynam. 9(4), 255–295 (2018)

    Article  Google Scholar 

  • Zhao, B., Wan, W., Liu, L.: Response of equatorial anomaly to the October–November 2003 superstorms. Ann. Geophys. 23, 693 (2005)

    Article  ADS  Google Scholar 

  • Zhu, Q., Lu, G., Deng, Y.: Lowand mid-latitude ionospheric response to the 2013 St. Patrick’s Day geomagnetic storm in the American sector: global ionosphere thermosphere model simulation. Front. Astron. Space Sci. 9, 916739 (2022). https://doi.org/10.3389/fspas.2022.916739

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewer for providing valuable comments and suggestions to improve it further.

Funding

The work is partially supported by SERB, New Delhi for the CRG project (File No: CRG/2019/000573) and partially by the Institute of Imminence (IoE) Program (Scheme No: 6031) of BHU, Varanasi. SK is thankful to CSIR New Delhi, India for providing financial assistance under the scientist Pool Scheme [13(9049-A)/2019-Pool].

Author information

Authors and Affiliations

Authors

Contributions

Sunil Kumar Chaurasia: Formal analysis, Plotting graphs, Data curation. Kalpana Patel: Writing manuscript, Editing and analysis. Sanjay Kumar: Writing- Original draft preparation, Methodology, Conceptualization. Abhay Kumar Singh: Writing- Reviewing, Supervision, and Editing.

Corresponding authors

Correspondence to Kalpana Patel or Abhay Kumar Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasiya, S.K., Patel, K., Kumar, S. et al. Ionospheric response of St. Patrick’s Day geomagnetic storm over Indian low latitude regions. Astrophys Space Sci 367, 103 (2022). https://doi.org/10.1007/s10509-022-04137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04137-3

Keywords

Navigation