Skip to main content

Advertisement

Log in

Spatial and Temporal Ion Dynamics on a Complex Hydrological System: The Lower Luján River (Buenos Aires, Argentina)

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The interplay of the geochemistry of the lower stretch of the Luján River is analyzed with its natural geomorphology (basin features), local hydrometeorology (tidal regime and “sudestada” events) and the impact of polluted tributaries. Major ions, dissolved heavy metals and limnological variables were analyzed using multivariate techniques. The water quality of the mainstream of the Luján River, flowing through urbanized and industrialized areas is strongly and positively influenced by the input of the Paraná River through deltaic watercourses and is negatively impacted after receiving the discharge from polluted watercourses. The longitudinal spatial variations evidenced major discontinuities in the Lower Luján Basin, showing clearly the riverine and the deltaic water influenced zones. Seasonal variations were also marked and were either temperature driven or associated with the estuarine cycle and the “sudestada”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrade MI (1986) Factores del deterioro ambiental de la cuenca del Río LujánContribución del Instituto de Geografía, Facultad de Filosofía y Letras. Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  • APHA, AWWA, WPCF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Barltrop D (1979) Geochemical and man-made sources of lead and human health. Philos Trans R Soc Lond Ser B: Biol Sci 288:205–211

    Article  Google Scholar 

  • Bozzano H, Pintos P (1995) Medio físico y conflictos ambientales. In: El conurbano bonaerense, relevamiento y análisis. CONAMBA, Ministerio del Interior: La Plata

  • Chichizola SE (1993) las comunidades vegetales de la Reserva Natural Estricta Otamendi y sus relaciones con el ambiente. Parodiana 8:227–263

    Google Scholar 

  • Councell TB, Duckenfield KU, Landa ER, Callender E (2004) Tire-wear particles as a source of Zn to the environment. Environ Sci Technol 38:4206–4214. doi:10.1021/es034631f

    Article  Google Scholar 

  • Dai MH, Guo XG, Zhai WD, Wang BW, Zuan LY, Wang LF, Tang TT, Cai WJ (2006) Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar Chem 102:159–169. doi:10.1016/j.marchem.2005.09.020

    Article  Google Scholar 

  • Das SK, Routh J, Roychoudhury AN, Val Klump J (2008) Major and trace element geochemistry in Zeekoevlei, South Africa: a lacustrine record of present and past processes. Appl Geochem 23:2496–2511

    Google Scholar 

  • Defensor del Pueblo de la Nación (2007) Informe sobre la contaminación en la Cuenca del Río Reconquista. http://www.defensor.gov.ar/informes/info23-sp.htm. Accessed 17 Mar 2009

  • del Giorgio P, Vinocur A, Lombardo RJ, Tell G (1991) Progressive changes in the structure and dynamics of the phytoplankton community along a pollution gradient—a multivariate approach. Hydrobiologia 224:129–154. doi:10.1007/BF00008464

    Article  Google Scholar 

  • Depetris PJ, Pasquini AI, Parma MJ (2007) The Middle Paraná River: limnology of a subtropical wetland. In: Iriondo MH, Paggi JC (eds) The geochemistry of the Paraná River: an overview. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Di Marzio WD, Sáenz M, Alberdi J, Tortorelli M, Galassi S (2005) Risk assessment of domestic and industrial effluents unloaded into a freshwater environment. Ecotoxicol Environ Safety 61:380–391

    Article  Google Scholar 

  • Environmental Protection Agency (2006) Current national recommended water quality criteria. http://www.epa.gov/waterscience/criteria/wqctable/nrwqc-2006.pdf. Accessed 27 Nov 2008

  • Fernández Cirelli A, Ojeda C (2008) Wastewater management in Greater Buenos Aires, Argentina. Desalination 218:52–61. doi:10.1016/j.desal.2006.10.040

    Article  Google Scholar 

  • Frida I, Reboredo G, Mulvany S, Pascual A (1996) El cauce inferior del Río Luján Calidad de sus aguas y dinámica fluvial. Facultad de Ingeniería. Universidad Nacional de la Plata, La Plata

    Google Scholar 

  • Genereuz DP, Hooper RP (1998) Oxygen and hydrogen isotopes in rainfall-runoff studies. In: Kendall C, McDonnell JJ (eds) Tracers in catchment hydrology. Elsevier Science, New York

    Google Scholar 

  • Gentile EE, González SG (2001) Social vulnerability to floods in Buenos Aires city (Argentina): the cases of La Boca neighbourhood and the basin of Maldonado stream. Open Meeting of Global Environmental Change Research CommunityRio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Gianesella SMF, Saldanha-Corrêa FMP, Teixeira C (2000) Tidal effects on nutrients and phytoplankton distribution in Bertioga Channel, São Paulo, Brazil. Aquat Ecosyst Health Manage 3:533–544

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. doi:10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Giorgi A, Banchero M, Rivelli S, Clarensio O, Cuevas W (1999) Algunas variables indicativas de la calidad del agua del tramo medio del Río Luján. In: VII Jornadas pampeanas de Ciencias Naturales. COPROCNA

  • Halverson MJ, Pawlowicz R (2008) Estuarine forcing of a river plume by river flow and tides. J Geophys Res 113:C09033. doi:10.1029/2008JC004844

    Article  Google Scholar 

  • Helena BA, Vega M, Barrado E, Pardo R, Fernández L (1999) A case of hydrochemical characterization of an alluvial aquifer influenced by human activities. Water Air Soil Pollut 112:365–387. doi:10.1023/A:1005065422156

    Article  Google Scholar 

  • Hooper RP (2003) Diagnostic tools for mixing models of stream water chemistry. Water Resour Res 39(3):1055. doi:10.1029/2002WR001528

    Article  Google Scholar 

  • INDEC (2008) Tamaño y ritmo de crecimiento de la población por provincia. http://www.indec.com.ar/frame_indec.gov.ar.htm/sesd_01a01. Accessed 27 Nov 2008

  • Instituto Provincial de Medio Ambiente (1996) Cuencas hídricas Contaminación, evaluación de riesgo y saneamiento. Gobernación de la Provincia de Buenos AiresLa Plata, La Plata

    Google Scholar 

  • Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol (Amst) 253:194–210. doi:10.1016/S0022-1694(01)00481-4

    Article  Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11:363–370. doi:10.1016/0883-2927(95)00084-4

    Article  Google Scholar 

  • Koroleff F (1983) Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate. In: Grosshoff K, Eberhadt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheimer

    Google Scholar 

  • Maidana NI, O’Farrell I, Lombardo RJ, dos Santos Afonso M (2005) Short-term ecological implications of the diversión of a highly polluted lowland river: a case study. Bull Environ Contam Toxicol 75:1176–1184. doi:10.1007/s00128-005-0873-y

    Article  Google Scholar 

  • Marker AFH, Crowther CA, Gunn RJM (1980) Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Ergerb Limnol 14:52–69

    Google Scholar 

  • Matteucci SD (2006) Crecimiento urbano y sus consecuencias sobre el entorno rural: El caso de la ecorregión pampeana. In: Ecología de paisajes. Filosofía, conceptos y métodos. Orientación Gráfica Editora, Buenos Aires

  • Mosto GA (2008) Producción Urbana. Estructura por sector de actividad. http://www.atlasdebuenosaires.gov.ar/aaba/index.php?option=com_content&task=view&id=325&Itemid=178&lang=es. Accessed 27 Nov 2008

  • Nadal N, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321:59–69. doi:10.1016/j.scitotenv.2003.08.029

    Article  Google Scholar 

  • Navarro A, Carbonell M (2007) Evaluation of groundwater contamination beneath an urban environment: The Beso’s river basin (Barcelona, Spain). J Environ Manage 85:259–269. doi:10.1016/j.jenvman.2006.08.021

    Article  Google Scholar 

  • Neal C (1988) Bicarbonate estimation from alkalinity determinations for neutral to acidic low alkalinity natural waters: theoretical considerations. J Sci Hydrol 33:619–623

    Article  Google Scholar 

  • O’Farrell I, Lombardo R, de Tezanos Pinto P, Loez C (2002) The assessment of water quality in the Lower Luján River (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environ Pollut 120(2):207–218. doi:10.1016/S0269-7491(02)00136-7

    Article  Google Scholar 

  • Papadakis J (1980) El suelo. Albatros, Buenos Aires

    Google Scholar 

  • Pizarro H, Rodríguez P, Bonaventura SM, O’Farrell I, Izaguirre I (2007) The “sudestadas”: a hydrometeorological phenomenon that affect river pollution (River Luján, South America). Hydrol Sci J 52:702–712. doi:10.1623/hysj.52.4.702

    Article  Google Scholar 

  • Pogge von Strandmann PAE, James RH, van Calsteren P, Gíslason SR, Burton KW (2008) Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth Planet Sci Lett 274:462–471. doi:10.1016/j.epsl.2008.07.041

    Article  Google Scholar 

  • Reyna J, Spalletti P, Brea JD (2007) Riesgo de Inundaciones en el Río Luján. Laboratorio de Hidráulica, Instituto Nacional del Agua, Buenos Aires

    Google Scholar 

  • Rodríguez A, Ruggerio C, Fernández L (2008). http://www.cedet.edu.ar/dlocal/dlocal_numero_5/d_local5.swf. Accessed 17 Mar 2009

  • Stumm W, Morgan J (1991) Aquatic chemistry, chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Subsecretaría Recursos Hídricos Nación (2005) Niveles Guía Nacionales de Calidad de Agua Ambiente. República Argentina. http://www.hidricosargentina.gov.ar/base_niveles_guia.xls. Accessed 27 Nov 2008

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. doi:10.1007/BF00877430

    Article  Google Scholar 

  • Tessier A (1992) Sorption of trace metals on natural particles. In: Buffle J, Van Leeuwen H (eds) Toxic environments, environmental particles. Lewis Publishers, Chelsea

    Google Scholar 

  • Tossavainen M, Forssberg E (1999) The potential leachability from natural road construction materials. Sci Total Environ 239:31–47. doi:10.1016/S0048-9697(99)00283-1

    Article  Google Scholar 

  • UNESCO (2006) Water a shared responsibility. The United Nations World Water Development Report 2. United Nations Educational Scientific and Cultural Organization, Paris & Berghahn Beats, New York

    Google Scholar 

  • van der Sloot HA, Comans RNJ, Hjelmar O (1996) Similarities in leaching behaviours of trace contaminants from waste, stabilized waste, construction materials and soils. Sci Total Environ 178:111–126. doi:10.1016/0048-9697(95)04803-0

    Article  Google Scholar 

  • Ventura AS, Macro TA, Momo FR (1997) Contaminación del Río Luján (Buenos Aires, Argentina). Caracterización física y química de la calidad del agua. In: Resúmenes II Congreso Argentino de Limnología, Buenos Aires

  • Wachs B (1998) A qualitative classification for the evaluation of the heavy metal contamination in river ecosystems. Verh Int Vereinigung Limnol 26:1289–1294

    Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16. doi:10.1016/j.envpol.2005.09.004

    Article  Google Scholar 

  • Zhou JL, Liu YP, Abrahams PW (2003) Trace metal behaviour in the Conwy estuary, North Wales. Chemosphere 51:429–440. doi:10.1016/S0045-6535(02)00853-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported with grants from the University of Buenos Aires, CONICET and ANPCYT. The authors are also grateful to Prefectura Naval Argentina for making available a ship for this research work and for the field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben J. Lombardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardo, R.J., O’Farrell, I. & dos Santos Afonso, M. Spatial and Temporal Ion Dynamics on a Complex Hydrological System: The Lower Luján River (Buenos Aires, Argentina). Aquat Geochem 16, 293–309 (2010). https://doi.org/10.1007/s10498-009-9064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9064-5

Keywords

Navigation