Skip to main content
Log in

Numerical Simulation of Coherent Structures over Plant Canopy

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper reports large eddy simulations of the interaction between an atmospheric boundary layer and a canopy (representing a forest cover). The problem is studied for a homogeneous configuration representing the situation encountered above a continuous forest cover, as well as for a heterogeneous configuration representing the situation similar to an edge or a clearing in a forest. The numerical results reproduces correctly all the main characteristics of this flow as reported in the literature: the formation of a first generation of coherent structures aligned transversally with the wind flow direction, the reorganization and the deformation of these vortex tubes into horse-shoe structures. The results obtained when introducing a discontinuity in the canopy (reproducing a clearing or a fuel break in a forest), are compared with the experimental data collected in a wind tunnel; here, the results confirm the existence of a strong turbulence activity inside the canopy at a distance equal to 8 times the height of the canopy, referenced in the literature as the Enhance Gust Zone (EGZ) characterized by a local peak of the skewness factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnigan, J.J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000)

    Article  Google Scholar 

  2. Kaimal, J.C., Finnigan, J.J.: Atmospheric Boundary Layer Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  3. Ghisalberti, M., Nepf, H.: The structure of the shear layer in flows over rigid and flexible canopies. Environ. Fluid Mech. 6, 277–301 (2006)

    Article  Google Scholar 

  4. Massman, W.J.: A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorol. 40, 179–197 (1987)

    Article  Google Scholar 

  5. Nepf, H., Ghisalberti, M., White, B., Murphy, E.: Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43(4), (2007)

  6. Finnigan, J.J., Shaw, R.H.: A wind-tunnel study of airflow in waving wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol. 96, 211–255 (2000)

    Article  Google Scholar 

  7. Marshall, B.J., Wood, C.J., Gardiner, B.A., Belcher, R.E.: Conditional sampling of forest canopy gusts. Boundary-Layer Meteorol. 102, 225–251 (2002)

    Article  Google Scholar 

  8. Finnigan, J.J.: Turbulence in waving wheat. I. Mean statistics and honami. Boundary-Layer Meteorol. 16(2), 181–211 (1979)

    Article  Google Scholar 

  9. Raupach, M.R., Finnigan, J.J., Brunet, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78, 351–382 (1996)

    Article  Google Scholar 

  10. Brunet, Y., Irvine, M.R.: The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol. 94, 139–163 (2000)

    Article  Google Scholar 

  11. Shaw, R.H., Schumann, U.: Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol. 61, 47–64 (1992)

    Article  Google Scholar 

  12. Su, H.-B., Shaw, R.H., Paw, U.K.T., Moeng, C.-H., Sullivan, P.P.: Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol. 88, 363–397 (1998)

    Article  Google Scholar 

  13. Su, H.-B., Shaw, R.H., Paw, U.K.T.: Two-point correlation analysis of neutrally stratified flow within and above a forest from large-eddy simulation. Boundary-Layer Meteorol. 94, 423–460 (2000)

    Article  Google Scholar 

  14. Shaw, R.H., Patton, E.G.: Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation. Agric. For. Meteorol. 115, 5–17 (2003)

    Article  Google Scholar 

  15. Hu, X., Lee, X., Stevens, D.E., Smith, R.B.: A numerical study of nocturnal wavelike motion in forests. Boundary-Layer Meteorol. 102, 199–223 (2002)

    Article  Google Scholar 

  16. Fitzmaurice, L., Shaw, R.H., Kyaw, T.P.U., Patton, E.G.: Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow. Boundary-Layer Meteorol. 112, 107–127 (2004)

    Article  Google Scholar 

  17. Watanabe, T.: Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol. 112, 307–341 (2004)

    Article  Google Scholar 

  18. Dupont, S., Brunet, Y.: Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol. 126, 51–71 (2008)

    Article  Google Scholar 

  19. Flesch, T.K., Wilson, J.D.: Wind and remnant tree sway in forest cutblocks. I. Measured winds in experimental cutblocks. Agric. For. Meteorol. 93, 229–242 (1999)

    Article  Google Scholar 

  20. Yang, B., Morse, A.P., Shaw, R.H., Paw, U.K.T.: Large eddy simulation of turbulent flow across a forest edge Part II: momentum and turbulence kinetic energy budgets. Boundary-Layer Meteorol. 121, 433–457 (2006)

    Article  Google Scholar 

  21. Yang, B., Raupach, M., Shaw, R.H., Paw, U.K.T., Morse, A.P.: Large eddy simulation of turbulent flow across a forest edge Part I: flow statistics. Boundary-Layer Meteorol. 120, 377–412 (2006)

    Article  Google Scholar 

  22. Patton, E.G., Shaw, R.H., Judd, M.J., Raupach, M.R.: Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol. 87, 275–306 (1998)

    Article  Google Scholar 

  23. Raupach, M.R., Bradley, E.F., Ghadiri, H.: A Wind Tunnel Investigation into Aerodynamic Effect of Forest Clearings on the Nesting of Abbott’s Boody on Christmas Island. Internal report, pp. 21. CSIRO Centre for environmental Mechanics, Canberra (1987)

  24. Foudhil, H., Brunet, Y., Caltagirone, J.-P.: A k-ε model for atmospheric flow over heterogeneous landscapes. Env. Fluid Mech. 5, 247–265 (2005)

    Article  Google Scholar 

  25. Irvin, M.R., Gardiner, B.A., Hill, M.K.: The evolution of turbulence across a forest edge. Boundary-Layer Meteorol. 84, 467–496 (1997)

    Article  Google Scholar 

  26. Cassiani, M., Katul, G.G., Albertson, J.D.: The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol. 126, 433–460 (2008)

    Article  Google Scholar 

  27. Moeng, C.H.: A large eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984)

    Article  Google Scholar 

  28. Accary, G., Bessonov, O., Fougere, D., Meradji, S., Morvan, D.: Optimized parallel approach for 3D modelling of forest fire behaviour. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 96–102. Springer, Heidelberg (2007)

    Google Scholar 

  29. Rogers, M.M., Moser, R.D.: The three dimensional evolution of a plane mixing layer: the Kelvin–Helmholtz rollup. J. Fluid Mech. 243, 183–226 (1992)

    Article  MATH  Google Scholar 

  30. Green, S.I. (ed.): Fluid Vortices. Kluwer Academic Press, Netherlands (1994)

    Google Scholar 

  31. Michalke, A.: On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19, 543–556 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hunt, J., Wray, A., Mion, P.: Eddies, streams and convergence zones in turbulent flows. Center of Turbulence Research Rep., CTR-S88, 193 (1988)

  33. Winant, C.D., Browand, F.K.: Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255 (1974)

    Article  Google Scholar 

  34. Comte, P., Lesieur, M., Lamballais, E.: Large and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer. Phys. Fluids A 4, 2761–2778 (1992)

    Article  Google Scholar 

  35. Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  36. Adrian, R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301 (2007)

    Article  Google Scholar 

  37. Shaw, R.H., Den Hartog, G., Neumann, H.H.: Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary-Layer Meteorol. 45, 391–409 (1988)

    Article  Google Scholar 

  38. Huang, M., Cassiani, J.D., Albertson, J.D.: Analysis of coherent structures within the atmospheric boundary layer. Boundary-Layer Meteorol. 131, 147–171 (2009)

    Article  Google Scholar 

  39. Shen, S., Leclerc, M.Y.: Modelling the turbulence structure in the canopy layer. Agric. For. Meteorol. 87, 3–25 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Morvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, K., Accary, G., Morvan, D. et al. Numerical Simulation of Coherent Structures over Plant Canopy. Flow Turbulence Combust 86, 89–111 (2011). https://doi.org/10.1007/s10494-010-9294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9294-z

Keywords

Navigation