Skip to main content
Log in

Large-Eddy Simulation Study of Thermally Stratified Canopy Flow

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A number of large-eddy simulations (LES) are performed for the calculation of the airflow over a horizontally homogeneous forest canopy for a wide range of thermal stability classes. For the first time, results from LES of a stably stratified canopy are also presented. Simulation results compare favourably to recent field measurements over a pine forest in south-eastern Sweden. The simple heat source model was found to perform adequately and to yield within-canopy heat-flux profiles typically observed for stable conditions in the field. Evidence was found for a layer of unstably stratified air in the canopy trunk space under stable stratification. The importance of a secondary wind-speed maximum is emphasized in stable conditions. Examination of the budget equation of turbulent kinetic energy (TKE) revealed that, during stable stratification, pressure transport plays an increasingly important role in supplying the canopy region with TKE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen LH Jr (1968) Turbulence and wind speed spectra within a Japanese larch plantation. J Appl Meteorol 7(1):73–78

    Article  Google Scholar 

  • Amiro BD (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51(1–2):99–121

    Article  Google Scholar 

  • Arnqvist J, Dellwik E, Segalini A, Bergström H (2015) Wind statistics from a forested landscape. Boundary-Layer Meteorol (in press)

  • Bailey BN, Stoll R (2013) Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study. Boundary-Layer Meteorol 147(3):369–400

    Article  Google Scholar 

  • Baldocchi DD, Meyers TP (1988) Turbulence structure in a deciduous forest. Boundary-Layer Meteorol 43(4):345–364

    Article  Google Scholar 

  • Basu S, Porté-Agel F (2006) Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J Atmos Sci 63(8):2074–2091

    Article  Google Scholar 

  • Bergström H, Alfredsson H, Arnqvist J, Carlén I, Dellwik E, Fransson J, Ganander H, Mohr M, Segalini A, Söderberg S (2013) Wind power in forests: wind and effects on loads. Vindforsk Rapport, 167 pp

  • Bhushan S, Warsi ZUA (2005) Large eddy simulation of turbulent channel flow using an algebraic model. Int J Numer Methods Fluids 49(5):489–519

    Article  Google Scholar 

  • Bhushan S, Warsi ZUA, Walters KD (2006) Modeling of energy backscatter via an algebraic subgrid-stress model. AIAA J 44(4):837–847

    Article  Google Scholar 

  • Bohrer G, Katul GG, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132(3):351–382

    Article  Google Scholar 

  • Breuer L, Eckhardt K, Frede H-G (2003) Plant parameter values for models in temperate climates. Ecol Model 169(2):237–293

    Article  Google Scholar 

  • Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94(1):139–163

    Article  Google Scholar 

  • Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70(1–2):95–132

    Article  Google Scholar 

  • Cassiani M, Katul GG, Albertson JD (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126(3):433–460

    Article  Google Scholar 

  • Cava D, Katul GG, Scrimieri A, Poggi D, Cescatti A, Giostra U (2006) Buoyancy and the sensible heat flux budget within dense canopies. Boundary-Layer Meteorol 118(1):217–240

    Article  Google Scholar 

  • Chahine A, Dupont S, Sinfort C, Brunet Y (2014) Wind-flow dynamics over a vineyard. Boundary-Layer Meteorol 151(3):557–577

    Article  Google Scholar 

  • Chatziefstratiou EK, Velissariou V, Bohrer G (2014) Resolving the effects of aperture and volume restriction of the flow by semi-porous barriers using large-eddy simulations. Boundary-Layer Meteorol 152(3):329–348

    Article  Google Scholar 

  • Chougule A, Mann J, Segalini A, Dellwik E (2015) Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes. Wind Energy 18(3):469–481

    Article  Google Scholar 

  • Cionco RM (1972) Intensity of turbulence within canopies with simple and complex roughness elements. Boundary-Layer Meteorol 2(4):453–465

    Article  Google Scholar 

  • Davidson L (2009) Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing. Philos Trans R Soc A 367(1899):2905–2915

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4):495–527

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008a) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126(1):51–71

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008b) Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric For Meteorol 148(6):976–990

    Article  Google Scholar 

  • Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128

    Article  Google Scholar 

  • Dupont S, Patton EG (2012) Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment. Agric For Meteorol 157:11–29

    Article  Google Scholar 

  • Dupont S, Bonnefond JM, Irvine MR, Lamaud E, Brunet Y (2011) Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151(3):328–344

    Article  Google Scholar 

  • Dwyer MJ, Patton EG, Shaw RH (1997) Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol 84(1):23–43

    Article  Google Scholar 

  • Endalew AM, Hertog M, Gebrehiwot MG, Baelmans M, Ramon H, Nicolaï BM, Verboven P (2009) Modelling airflow within model plant canopies using an integrated approach. Comput Electron Agric 66(1):9–24

    Article  Google Scholar 

  • Finnigan J (1979) Turbulence in waving wheat II. Structure of momentum transfer. Boundary-Layer Meteorol 16:213–236

    Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32(1):519–571

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge 316 pp

    Google Scholar 

  • Högström U, Bergström H, Smedman AS, Halldin S, Lindroth A (1989) Turbulent exchange above a pine forest, I: fluxes and gradients. Boundary-Layer Meteorol 49(1–2):197–217

    Article  Google Scholar 

  • Hu X, Lee X, Stevens DE, Smith RB (2002) A numerical study of nocturnal wavelike motion in forests. Boundary-Layer Meteorol 102(2):199–223

    Article  Google Scholar 

  • Huang J, Cassiani M, Albertson JD (2009) The effects of vegetation density on coherent turbulent structures within the canopy sublayer: a large-eddy simulation study. Boundary-Layer Meteorol 133(2):253–275

    Article  Google Scholar 

  • Jiménez MA, Cuxart J (2005) Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: range of applicability. Boundary-Layer Meteorol 115(2):241–261

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford 289 pp

    Google Scholar 

  • Kanda M, Hino M (1994) Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68(3):237–257

    Article  Google Scholar 

  • Kleissl J, Kumar V, Meneveau C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res 42(6):W06D10

  • Kruijt B, Malhi Y, Lloyd J, Norbre AD, Miranda AC, Pereira MGP, Culf A, Grace J (2000) Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorol 94(2):297–331

    Article  Google Scholar 

  • Lalic B, Mihailovic DT (2004) An empirical relation describing leaf-area density inside the forest for environmental modeling. J Appl Meteorol 43(4):1498–1512

    Article  Google Scholar 

  • Launiainen S, Vesala T, Mölder M, Mammarella I, Smolander S, Rannik Ü, Kolari P, Hari P, Lindroth A, Katul GG (2007) Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus B 59(5):919–936

    Article  Google Scholar 

  • Leclerc MY, Beissner KC, Shaw RH, Den Hartog G, Neumann HH (1990) The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J Appl Meteorol 29(9):916–933

    Article  Google Scholar 

  • Leclerc MY, Beissner KC, Shaw RH, Den Hartog G, Neumann HH (1991) The influence of buoyancy on third-order turbulent velocity statistics within a deciduous forest. Boundary-Layer Meteorol 55(1–2):109–123

    Article  Google Scholar 

  • Lee X, Black TA (1993) Atmospheric turbulence within and above a Douglas-fir stand. Part I: statistical properties of the velocity field. Boundary-Layer Meteorol 64(1–2):149–174

    Article  Google Scholar 

  • Meyers TP, Baldocchi DD (1991) The budgets of turbulent kinetic energy and Reynolds stress within and above a deciduous forest. Agric For Meteorol 53(3):207–222

    Article  Google Scholar 

  • Moeng CH (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41(13):2052–2062

    Article  Google Scholar 

  • Nebenführ B, Davidson L (2014) Influence of a forest canopy on the neutral atmospheric boudary layer—a LES study. In: ETMM10: 10th international ERCOFTAC symposium on turbulence modelling and measurements, Marbella, Spain, 17–19 September 2014

  • Nebenführ B, Carlén I, Caracoglia L, Davidson L (2014) Development of a reduced-order model for wind turbine response to atmospheric turbulence in forest regions. In: Proceedings of 6th international symposium on computational wind engineering, Hamburg, Germany, 8–12 June 2014

  • Novak MD, Warland JS, Orchansky AL, Ketler R, Green S (2000) Wind tunnel and field measurements of turbulent flow in forests. Part I: uniformly thinned stands. Boundary-Layer Meteorol 95(3):457–495

    Article  Google Scholar 

  • Poggi D, Katul GG, Albertson JD (2004a) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111(3):589–614

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004b) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3):565–587

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy part I: the turbulence structure. Boundary-Layer Meteorol 35(1–2):21–52

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1):1–25

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78(3–4):351–382

    Article  Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2012) Large-eddy simulation of inhomogeneous canopy flows using high resolution terrestrial laser scanning data. Boundary-Layer Meteorol 142(2):223–243

    Article  Google Scholar 

  • Schröttle J, Dörnbrack A (2013) Turbulence structure in a diabatically heated forest canopy composed of fractal Pythagoras trees. Theor Comput Fluid Dyn 27(3–4):337–359

    Article  Google Scholar 

  • Segalini A, Fransson JHM, Alfredsson PH (2013) Scaling laws in canopy flows: a wind-tunnel analysis. Boundary-Layer Meteorol 148(2):269–283

    Article  Google Scholar 

  • Shaw RH (1977) Secondary wind speed maxima inside plant canopies. J Appl Meteorol 16(5):514–521

    Article  Google Scholar 

  • Shaw RH, Patton EG (2003) Canopy element influences on resolved-and subgrid-scale energy within a large-eddy simulation. Agric For Meteorol 115(1):5–17

    Article  Google Scholar 

  • Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61(1–2):47–64

    Article  Google Scholar 

  • Shaw RH, Zhang XJ (1992) Evidence of pressure-forced turbulent flow in a forest. Boundary-Layer Meteorol 58(3):273–288

    Article  Google Scholar 

  • Shaw RH, Den Hartog G, Neumann HH (1988) Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary-Layer Meteorol 45(4):391–409

    Article  Google Scholar 

  • Shen S, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87(1):3–25

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126(1):1–28

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht 666 pp

    Book  Google Scholar 

  • Su HB, Shaw RH, Paw KT, Moeng CH, Sullivan PP (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88(3):363–397

    Article  Google Scholar 

  • Su HB, Schmid HP, Vogel CS, Curtis PS (2008) Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agric For Meteorol 148(6):862–882

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge 429 pp

    Google Scholar 

  • Villani MG, Schmid HP, Su HB, Hutton JL, Vogel CS (2003) Turbulence statistics measurements in a northern hardwood forest. Boundary-Layer Meteorol 108(3):343–364

    Article  Google Scholar 

  • Watanabe T (2004) Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol 112(2):307–341

    Article  Google Scholar 

  • Yang B, Morse AP, Shaw RH, Paw U KT (2006a) Large-eddy simulation of turbulent flow across a forest edge. Part II: momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol 121(3):433–457

    Article  Google Scholar 

  • Yang B, Shaw RH, Paw UKT (2006b) Wind loading on trees across a forest edge: a large eddy simulation. Agric For Meteorol 141(2):133–146

    Article  Google Scholar 

  • Yue W, Meneveau C, Parlange MB, Zhu W, van Hout R, Katz J (2007a) A comparative quadrant analysis of turbulence in a plant canopy. Water Resour Res 43(5). doi:10.1029/2006WR005583

  • Yue W, Parlange MB, Meneveau C, Zhu W, van Hout R, Katz J (2007b) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124(2):183–203

    Article  Google Scholar 

  • Yue W, Meneveau C, Parlange MB, Zhu W, Kang HS, Katz J (2008) Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments. Environ Fluid Mech 8(1):73–95

    Article  Google Scholar 

  • Zhuang Y, Amiro BD (1994) Pressure fluctuations during coherent motions and their effects on the budgets of turbulent kinetic energy and momentum flux within a forest canopy. J Appl Meteorol 33(6):704–711

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Johan Arnqvist (Uppsala University), Ebba Dellwik (DTU) and Hans Bergström (Uppsala University) for providing the field data. This project is financed through the Swedish Wind Power Technology Centre (SWPTC). SWPTC is a research centre for the design of wind turbines. The purpose of the centre is to support Swedish industry with knowledge of design techniques as well as maintenance in the field of wind power. The Centre is funded by the Swedish Energy Agency, Chalmers University of Technology as well as academic and industrial partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Nebenführ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebenführ, B., Davidson, L. Large-Eddy Simulation Study of Thermally Stratified Canopy Flow. Boundary-Layer Meteorol 156, 253–276 (2015). https://doi.org/10.1007/s10546-015-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0025-9

Keywords

Navigation