Skip to main content
Log in

Stretching strongly confined semiflexible polymer chain

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

By the so-called wormlike chain (WLC) model in polymer physics envisioning an isotropic rod that is continuously flexible, the force-extension relations of semi-flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reisner, W., Pedersen, J. N., and Austin, R. H. DNA confinement in nanochannels: physics and biological applications. Report on Progress in Physics, 75(10), 106601 (2012)

    Article  Google Scholar 

  2. Wang, J. and Gao, H. A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement. The Journal of Chemical Physics, 123(8), 084906 (2005)

    Article  Google Scholar 

  3. De Gennes, P. G. Scaling Concepts in Polymer Physics, Cornell University Press, New York (1979)

    Google Scholar 

  4. Odijk, T. Translational friction coefficient of hydrodynamically screened rodlike macromolecules. Macromolecules, 19(7), 2073–2074 (1986)

    Article  Google Scholar 

  5. Schiessel, H. The physics of chromatin. Journal of Physics: Condensed Matter, 15(19), R699 (2003)

    Google Scholar 

  6. Earnshaw, W. C. and Harrison, S. C. DNA arrangement in isometric phage heads. nature, 268, 598–602 (1977)

    Article  Google Scholar 

  7. Purohit, P. K., Kondev, J., and Phillips, R. Mechanics of DNA packaging in viruses. Proceedings of the National Academy of Sciences, 100(6), 3173–3178 (2003)

    Article  Google Scholar 

  8. Wang, J., Li, L., and Gao, H. Compressed wormlike chain moving out of confined space: a model of DNA ejection from bacteriophage. Acta Mechanica Sinica, 28(4), 1219–1226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Odijk, T. The statistics and dynamics of confined or entangled stiff polymers. Macromolecules, 16(8), 1340–1344 (1983)

    Article  Google Scholar 

  10. Odijk, T. Scaling theory of DNA confined in nanochannels and nanoslits. Physical Review E, 77, 060901 (2008)

    Article  Google Scholar 

  11. Wang, Y., Tree, D. R., and Dorfman, K. D. Simulation of DNA extension in nanochannels. Macromolecules, 44(16), 6594–6604 (2011)

    Article  Google Scholar 

  12. Hsu, H. P. and Binder, K. Semi-flexible polymer chains in quasi-one-dimensional confinement: a Monte Carlo study on the square lattice. Soft Matter, 9(44), 10512–10521 (2013)

    Article  Google Scholar 

  13. Wang, J. and Gao, H. Stretching a stiff polymer in a tube. Journal of Materials Science, 42, 8838–8843 (2007)

    Article  Google Scholar 

  14. Dai, L. and Doyle, P. S. Comparisons of a polymer in confinement versus applied force. Macromolecules, 46, 6336–6344 (2013)

    Article  Google Scholar 

  15. Wang, J., Fan, X., and Gao, H. Stretching short DNAs in electrolytes. Molecular and Cellular Biomechanics, 3(1), 13–19 (2006)

    Google Scholar 

  16. Wang, J. and Gao, H. Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 4(2), 174–179 (2011)

    Article  Google Scholar 

  17. Liu, B., Wang, J., Fan, X., Kong, Y., and Gao, H. An effective bead-spring model for polymer simulation. Journal of Computational Physics, 227, 2794–2807 (2008)

    Article  MATH  Google Scholar 

  18. Kierfeld, J., Niamploy, O., Sa-Yakanit, V., and Lipowsky, R. Stretching of semiflexible polymers with elastic bonds. European Physical Journal E, 14(1), 17–34 (2004)

    Article  Google Scholar 

  19. Burkhardt, T. W. Free energy of a semiflexible polymer in a tube and statistics of a randomlyaccelerated particle. Journal of Physics A: Mathematical, Nuclear and General, 30(7), L167–L172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, Y., Burkhardt, T. W., and Gompper, G. Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Physical Review E, 76(1), 011804 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-zeng Wang  (王记增).

Additional information

Project supported the National Natural Science Foundation of China (Nos. 11032006, 11072094, and 11121202), the Ph.D. Program Foundation of Ministry of Education of China (No. 20100211110022), the National Key Project of Magneto-Constrained Fusion Energy Development Program of China (No. 2013GB110002), and the Fundamental Research Funds for the Central Universities (No. lzujbky-2013-1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jz., Li, Rh. Stretching strongly confined semiflexible polymer chain. Appl. Math. Mech.-Engl. Ed. 35, 1233–1238 (2014). https://doi.org/10.1007/s10483-014-1862-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1862-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation