Skip to main content
Log in

Accuracy Limits of the Blob Model for a Flexible Polymer Confined Inside a Cylindrical Nano-Channel

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The blob model is a well-known scaling theory for polymers in confined environments. In this manuscript, the limitations of the blob model for a flexible polymer confined inside a nano-cylinder are clarified theoretically and using molecular dynamics simulations. In this model, the confined polymer is divided into smaller sections called blobs. The free energy of the confined polymer is accurate under the conditions that (1) the number of monomers inside each blob and (2) total number of the blobs is large enough. In simulations, we consider the opposite limit of extremely narrow nano-channels. Interestingly, the simulation results show that the theory can describe the statics of the confined polymer, even when the above two requirements are not satisfied. However, when simulation parameters are beyond the theoretical limits, the fluctuations in the radius of gyration of the confined polymer have a much stronger dependence on the diameter of the nano-channel than the blob model predicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Austin, R.: Nanofluidics: a fork in the nano-road. Nat. Nanotechnol. 2, 79 (2007)

    Article  ADS  Google Scholar 

  2. Fu, J., Schoch, R., Stevens, A., Tannenbaum, S., Han, J.: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2, 121 (2007)

    Article  ADS  Google Scholar 

  3. Marie, R., Pedersen, J., Bauer, D., Rasmussen, K., Yusuf, M., Volpi, E., Flyvbjerg, H., Kristensen, A., Mir, K.: Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc. Natl. Acad. Sci. 110, 4893 (2013)

    Article  ADS  Google Scholar 

  4. Ivankin, A., Henley, R., Larkin, J., Carson, S., Toscano, M., Wanunu, M.: Label-free optical detection of biomolecular translocation through nanopore arrays. ACS Nano 8, 10774–10781 (2014)

    Article  Google Scholar 

  5. Plesa, C., van Loo, N., Ketterer, P., Dietz, H., Dekker, C.: Velocity of DNA during translocation through a solid state nanopore. Nano Lett. 15, 732–737 (2015)

    Article  ADS  Google Scholar 

  6. Branton, D., Deamer, D., Marziali, A., Bayley, H., Benner, S., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008)

    Article  Google Scholar 

  7. Wagner, F., Lattanzi, G., Frey, E.: Conformations of confined biopolymers. Phys. Rev. E 75, 050902 (2007)

    Article  ADS  Google Scholar 

  8. Zhang, C., Shao, P., van Kan, J., van der Maarel, J.: Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel. Proc. Natl. Acad. Sci. 106, 16651 (2009)

    Article  Google Scholar 

  9. Odijk, T.: Scaling theory of DNA confined in nanochannels and nanoslits. Phys. Rev. E 77, 060901 (2008)

    Article  ADS  Google Scholar 

  10. Bonthuis, D., Meyer, C., Stein, D., Dekker, C.: Conformation and dynamics of DNA confined in slitlike nanofluidic channels. Phys. Rev. Lett. 101, 108303 (2008)

    Article  ADS  Google Scholar 

  11. Chen, Y., Lin, Y., Chang, J., Lin, P.: Dynamics and conformation of semiflexible polymers in strong quasi-1D and-2D confinement. Macromolecules 47, 1199–1205 (2014)

    Article  ADS  Google Scholar 

  12. Cui, T., Ding, J., Chen, J.: Dynamics of a self-avoiding polymer chain in slit, tube, and cube confinements. Phys. Rev. E 78, 061802 (2008)

    Article  ADS  Google Scholar 

  13. Dai, L., Jones, J., van der Maarel, J., Doyle, P.: A systematic study of DNA conformation in slitlike confinement. Soft Matter 8, 2972–2982 (2012)

    Article  ADS  Google Scholar 

  14. Dai, L., Dai, L., Tree, D., van der Maarel, J., Dorfman, K., Doyle, P.: Revisiting blob theory for DNA diffusivity in slitlike confinement. Phys. Rev. Lett. 110, 168105 (2013)

    Article  ADS  Google Scholar 

  15. Dimitrov, D., Milchev, A., Binder, K., Klushin, L., Skvortsov, A.: Universal properties of a single polymer chain in slit: scaling versus molecular dynamics simulations. J. Chem. Phys. 128, 234902 (2008)

    Article  ADS  Google Scholar 

  16. Nikoofard, N., Hoseinpoor, M., Zahedifar, M.: Accuracy of the blob model for single flexible polymers inside nanoslits that are a few monomer sizes wide. Phys. Rev. E 90, 062603 (2014)

    Article  ADS  Google Scholar 

  17. Reccius, C., Mannion, J., Cross, J., Craighead, H.: Compression and free expansion of single DNA molecules in nanochannels. Phys. Rev. Lett. 95, 268101 (2005)

    Article  ADS  Google Scholar 

  18. Jun, S., Thirumalai, D., Ha, B.: Compression and stretching of a self-avoiding chain in cylindrical nanopores. Phys. Rev. Lett. 101, 138101 (2008)

    Article  ADS  Google Scholar 

  19. Reisner, W., Morton, K., Riehn, R., Wang, Y., Yu, Z., Rosen, M., Sturm, J., Chou, S., Frey, E., Austin, R.: Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94, 196101 (2005)

    Article  ADS  Google Scholar 

  20. Reisner, W., Pedersen, J., Austin, R.: DNA confinement in nanochannels: physics and biological applications. Rep. Prog. Phys. 75, 106601 (2012)

    Article  ADS  Google Scholar 

  21. Tree, D., Wang, Y., Dorfman, K.: Extension of DNA in a nanochannel as a rod-to-coil transition. Phys. Rev. Lett. 110, 208103 (2013)

    Article  ADS  Google Scholar 

  22. Burkhardt, T.: Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints. J. Stat. Phys. 145, 1472–1484 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fathizadeh, A., Heidari, M., Eslami-Mossallam, B., Ejtehadi, M.: Confinement dynamics of a semiflexible chain inside nano-spheres. J. Chem. Phys. 139, 044912 (2013)

    Article  ADS  Google Scholar 

  24. Berndsen, Z., Berndsen, Z., Keller, N., Grimes, S., Jardine, P., Smith, D.: Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. Proc. Natl. Acad. Sci. 111, 8345–8350 (2014)

    Article  ADS  Google Scholar 

  25. Jie, G., Tang, P., Yang, Y., Chen, J.: Free energy of a long semiflexible polymer confined in a spherical cavity. Soft Matter 10, 4674–4685 (2014)

    Article  ADS  Google Scholar 

  26. Rubinstein, M., Colby, R.: Polymers Physics. Oxford University Press, Oxford (2003)

    Google Scholar 

  27. Kim, Y., Kim, K., Kounovsky, K., Chang, R., Jung, G., Jo, K., Schwartz, D.: Nanochannel confinement: DNA stretch approaching full contour length. Lab Chip 11, 1721–1729 (2011)

    Article  Google Scholar 

  28. Matsuoka, T., Kim, B., Huang, J., Douville, N., Thouless, M., Takayama, S.: Nanoscale squeezing in elastomeric nanochannels for single chromatin linearization. Nano Lett. 12, 6480–6484 (2012)

    Article  ADS  Google Scholar 

  29. Kim, J., Jeon, C., Jeong, H., Jung, Y., Ha, B.: Elasticity of flexible polymers under cylindrical confinement: appreciating the blob scaling regime in computer simulations. Soft Matter 9, 6142–6150 (2013)

    Article  ADS  Google Scholar 

  30. Arnold, A., Bozorgui, B., Frenkel, D., Ha, B., Jun, S.: Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement. J. Chem. Phys. 127, 164903 (2007)

    Article  ADS  Google Scholar 

  31. Jung, Y., Jun, S., Ha, B.: Self-avoiding polymer trapped inside a cylindrical pore: flory free energy and unexpected dynamics. Phys. Rev. E 79, 061912 (2009)

    Article  ADS  Google Scholar 

  32. Limbach, H., Arnold, A., Mann, B., Holm, C.: ESPResSo–an extensible simulation package for research on soft matter systems. Comput. Phys. Commun. 174, 704–727 (2006)

    Article  ADS  Google Scholar 

  33. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Nikoofard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinpoor, S.M., Nikoofard, N. & Zahedifar, M. Accuracy Limits of the Blob Model for a Flexible Polymer Confined Inside a Cylindrical Nano-Channel. J Stat Phys 163, 593–603 (2016). https://doi.org/10.1007/s10955-016-1489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1489-9

Keywords

Navigation