Skip to main content
Log in

Stretching a stiff polymer in a tube

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present paper investigates the force-extension behavior of a stiff polymer under stretching inside a small tube. We develop a theory and perform Brownian dynamic simulations based on a recently developed generalized bead-rod model (GBR) to show that the force-extension relation of such a strongly confined polymer chain can be described by that of an unconfined polymer subject to an effective force which is derived based on Odijk’s theory of a confined polymer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In an unconfined solution, a stiff polymer usually means that its contour length L is smaller than its persistence length p. On the other hand, a polymer confined in a small tube can be regarded as stiff as long as the persistence length p of a polymer is larger than the tube radius R, irrespective of the ratio L/p. We do not distinguish these two situations in the current study.

  2. Here, a “tightly” or “strongly” confined polymer implies that the typical length scale of the confinement is smaller than the polymer’s persistence length.

References

  1. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY

    Google Scholar 

  2. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  3. Odijk T (1986) Macromolecules 19:2313

    Article  CAS  Google Scholar 

  4. Shiessel H (2003) J Phys Condens Matter 15:R699

    Article  Google Scholar 

  5. Earshaw WC, Harrison SC (1977) Nature 268:598

    Article  Google Scholar 

  6. Purohit PK, Kondev J, Philips R (2003) Proc Natl Acad Sci USA 100:3173

    Article  CAS  Google Scholar 

  7. De Gennes PG (1976) Macromolecules 9:587

    Article  Google Scholar 

  8. De Gennes PG (1976) Macromolecules 9:594

    Article  Google Scholar 

  9. De Gennes PG (1971) J Chem Phys 55:572

    Article  Google Scholar 

  10. Odijk T (1983) Macromolecules 16:1340

    Article  CAS  Google Scholar 

  11. Odijk T (1993) Macromolecules 26:6897

    Article  CAS  Google Scholar 

  12. Khokhlov AR, Semenov AN (1981) Physica A 108:546

    Article  Google Scholar 

  13. Khokhlov AR, Semenov AN (1982) Physica A 112:605

    Article  Google Scholar 

  14. Helfrich W, Harbich W (1985) Chem Scr 25:32

    CAS  Google Scholar 

  15. Helfrich W (1978) Z Naturforsch A 33:305

    Google Scholar 

  16. Helfrich W, Servuss RM (1984) Nuovo Cimento D 3:137

    Article  Google Scholar 

  17. Dijkstra M, Frenkel D, Lekkerkerker HNW (1993) Physica A 193:374

    Article  CAS  Google Scholar 

  18. Bicout DJ, Burkhard TW (2001) J Phys A: Math Gen 34:5745

    Article  CAS  Google Scholar 

  19. Wang J, Gao H (2005) J Chem Phys 123:084906

    Article  Google Scholar 

  20. Smith S, Finzi L, Bustamante D (1992) Science 258:1122

    Article  CAS  Google Scholar 

  21. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265:1599

    Article  CAS  Google Scholar 

  22. Strick T, Allemand J, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835

    Article  CAS  Google Scholar 

  23. Marko JF, Siggia ED (1995) Macromolecules 28:8759

    Article  CAS  Google Scholar 

  24. Kierfeld J, Niampoly O, Sa-Yakanit V, Lipowsky R (2004) Eur Phys J E 14:17

    Article  CAS  Google Scholar 

  25. Wang J, Fan X, Gao H (2006) Mol Cell Biomech 3(1):13

    Google Scholar 

  26. Burkhardt TW (1995) J Phys A: Math Gen 28:L629

    Article  CAS  Google Scholar 

  27. Burkhardt TW (1997) J Phys A: Math Gen 30:L167

    Article  CAS  Google Scholar 

  28. Jo K, Dhinhra DM, Odijk T, De Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) Proc Natl Acad Sci USA 104:2673

    Article  CAS  Google Scholar 

  29. Landau LD, Lifshitz EM (1958) Statistical physics. Addison-Wesley, Reading, MA

    Google Scholar 

  30. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463

    Article  CAS  Google Scholar 

  31. Peters EAJF, Barenbrug TMAOM (2002) Phys Rev E 66:056701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Gao, H. Stretching a stiff polymer in a tube. J Mater Sci 42, 8838–8843 (2007). https://doi.org/10.1007/s10853-007-1846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1846-9

Keywords

Navigation