Skip to main content
Log in

Compressed wormlike chain moving out of confined space: A model of DNA ejection from bacteriophage

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The molecular biomechanics of DNA ejection from bacteriophage is of interest to not only fundamental biological understandings but also practical applications such as the design of advanced site-specific and controllable drug delivery systems. In this paper, we analyze the viscous motion of a semiflexible polymer chain coming out of a strongly confined space as a model to investigate the effects of various structure confinements and frictional resistances encountered during the DNA ejection process. The theoretically predicted relations between the ejection speed, ejection time, ejection length, and other physical parameters, such as the phage type, total genome length and ionic state of external buffer solutions, show excellent agreement with in vitro experimental observations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, A.: The future of bacteriophage biology. Nat. Rev. Genet. 4, 471–477 (2003)

    Article  Google Scholar 

  2. Simpson, A. A., Tao, Y., Leiman, P. G., et al.: Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745–750 (2000)

    Article  Google Scholar 

  3. Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., et al.: Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002)

    Article  Google Scholar 

  4. Smith, D. E., Tans, S. J., Smith, S. B., et al.: The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001)

    Article  Google Scholar 

  5. Evilevitch, A., Lavelle, L., Knobler, C.M., et al.: Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl. Acad. Sci. USA 100, 9292–9295 (2003)

    Article  Google Scholar 

  6. Stockley, P. G., Twarok, R.: Emerging Topics in Physical Virology. Imperial College Press, London (2010).

    Book  Google Scholar 

  7. Richards, K. E., Williams, R. C., Calendar, R.: Mode of DNA packing within bacteriophage heads. J. Mol. Biol. 78, 255–259 (1973)

    Article  Google Scholar 

  8. Cerritelli, M. E., Cheng, N., Rosenberg, A. H., et al.: Encapsidated conformation of bacteriophage T7 DNA. Cell 91, 271–280 (1997)

    Article  Google Scholar 

  9. Olson, N. H., Gingery, M., Eiserling, F. A., et al.: The structure of isometric capsids of bacteriophage T4. Virology 279, 385–391 (2001)

    Article  Google Scholar 

  10. Ubbink, J., Odijk, T.: Deformation of toroidal DNA condensates under surface stress. Europhys. Lett. 33, 353–358 (1996)

    Article  Google Scholar 

  11. Kindt, J., Tzlil, S., Ben-Shaul, A., et al.: DNA packaging and ejection forces in bacteriophage. Proc. Natl. Acad. Sci. USA 98, 13671–13674 (2001)

    Article  Google Scholar 

  12. Purohit, P. K., Kondev, J., Phillips, R.: Mechanics of DNA packaging in viruses. Proc. Natl. Acad. Sci. USA 100, 3173–3178 (2003)

    Article  Google Scholar 

  13. Grayson, P., Han, L., Winther, T., et al.: Real-time observations of single bacteriophage λ DNA ejections in vitro. Proc. Natl. Acad. Sci. USA 104, 14652–14657 (2007)

    Article  Google Scholar 

  14. Klug, W. S., Ortiz, M. A.: A director-field model of DNA packaging in viral capsid. J. Mech. Phys. Solids. 51, 1815–1847 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Novick, S. L., Baldeschwieler, J. D.: Fluorescence measurement of the kinetics of DNA injection by bacteriophage lambda into liposomes. Biochemistry 27, 7919–7924 (1988)

    Article  Google Scholar 

  16. Gabashvili, I. S., Grosberg, A. Y.: Reptation of DNA from bacteriophage. Biophysics 36, 790–796 (1991)

    Google Scholar 

  17. Gabashvili, I. S., Grosberg, A. Y.: Dynamics of doublestranded DNA reputation from bacteriophage. J. Biomolec. Struc. Dyn. 9, 911–920 (1992)

    Article  Google Scholar 

  18. Tzlil, S., Kindt, J. T., Gelbart, W. M., et al.: Forces and pressures in DNA packaging and release from viral capsids Biophys. J. 84, 1616–1627 (2003)

    Article  Google Scholar 

  19. Spakowitz, A. J., Wang Z. G.: DNA packaging in bacteriophage: is twist important? Biophys. J. 88 3912–3923 (2005)

    Article  Google Scholar 

  20. Inamdarm M. M., Gelbart, W. M., Phillipsm R.: Dynamics of DNA ejection from bacteriophage. Biophys. J. 91, 411–420 (2006)

    Article  Google Scholar 

  21. Norisuye, T.: Semiflexible polymers in dilute solution. Prog. Polym. Sci. 18, 543–584 (1993)

    Article  Google Scholar 

  22. Norisuye, T., Motowoka, M., Fujita, H.: Wormlike chains near the rod limit: translational friction coefficient. Macromolecules 12, 320–323 (1979)

    Article  Google Scholar 

  23. Goingat, H. T., Pecora, R.: Dynamics of low molecular weight DNA fragments in dilute and semi dilute solution. Macromolecules 24, 6128–6138 (1991)

    Article  Google Scholar 

  24. Sorlie, S. S., Pecora, R.: A dynamic light scattering study of FOUR DNA restriction fragments. Macromolecules 23, 487–497 (1990)

    Article  Google Scholar 

  25. Smith, D., Perkins, T. T., Chu, S.: Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996)

    Article  Google Scholar 

  26. De Gennes, P. G.: Scaling Concepts in Polymer Physics. Cornell University Press, New York (1979)

    Google Scholar 

  27. Odijk, T.: The statistics and dynamics of confined or entangled stiff polymers. Macromolecules 16, 1340–1344 (1983)

    Article  Google Scholar 

  28. Wang, J., Gao, H.: Stretching a stiff polymer in a tube. J. Mater. Sci. 42, 8838–8843 (2007)

    Article  Google Scholar 

  29. Wang, J., Gao, H.: On hyperelastic stress-strain law of F-action bundles. Theor. Appl. Mech. Lett. 1, 014003 (2011)

    Article  Google Scholar 

  30. Wang, J., Gao, H.: A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement. J. Chem. Phys. 123, 084906 (2005)

    Article  Google Scholar 

  31. Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge University Press (1967)

  32. Su, T., Purohit, P. K.: Entropically driven motion of polymers in nonuniform nanochannels. Phys. Rev. E 83, 061906 (2011)

    Article  Google Scholar 

  33. Marko, J. F., Siggia, E. D.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)

    Article  Google Scholar 

  34. Dill, K. A., Bromberg, S.: Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science, New York (2003)

    Google Scholar 

  35. Baker, T. S., Olson, N. H., Fuller, S. D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999)

    Google Scholar 

  36. http://www.lenntech.com/calculators/osmotic/osmotic-pressure.htm

  37. Rau, D. C., Lee, B., Parsegian, V. A.: Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: hydration force between parallel DNA double helices. Proc. Natl. Acad. Sci. USA 81, 2621–2625 (1984)

    Article  Google Scholar 

  38. Christoph, G. B., Steven B. S., Victor, A. B., et al.: Ionic effects on the elasticity of single DNA molecles. Proc. Natl. Acad. Sci. USA 94, 6185–6190 (1997)

    Article  Google Scholar 

  39. Mantelli, S., Muller, P., Harlepp, S., et al.: Conformational analysis and estimation of the persistence length of DNA using atomic force micoscopy in solution. Soft Matter 7, 3412–3416 (2011)

    Article  Google Scholar 

  40. Conrad, W. M., Anja, N., Nicola, R., et al.: Diffusion of green fluorescent protein in three cell enviroments in Escherichia Coli. J. Bacteriol. 188, 3442–3448 (2006)

    Article  Google Scholar 

  41. Stock, J. B., Rauch, B., Roseman, S.: Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 252, 7850–7861 (1977)

    Google Scholar 

  42. Parkinson, J. S., Huskey, R. J.: Deletion mutants of bacteriophage lambda: 1. Isolation and initial characterization. J. Mol. Biol. 56, 369–384 (1971)

    Article  Google Scholar 

  43. Grayson P., Molineux I. J.: Is phageDNA ‘injected’ into cells—biologists and physicists can agree. Current Opinion in Microbiology 10, 401–409 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Zeng Wang or Hua-Jian Gao.

Additional information

The project was supported by the National Natural Science Foundation of China (11032006, 11072094, and 11121202), the PhD Program Foundation of the Ministry of Education of China (20100211110022), and New Century Excellent Talents in University (NCET-10-0445). The work of HG is supported by the National Science Foundation through grant CMMI-1028530 to Brown University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JZ., Li, L. & Gao, HJ. Compressed wormlike chain moving out of confined space: A model of DNA ejection from bacteriophage. Acta Mech Sin 28, 1219–1226 (2012). https://doi.org/10.1007/s10409-012-0121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0121-8

Keywords

Navigation