Skip to main content
Log in

Matrix representations of berge stabilities in the graph model for conflict resolution

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Conflicts occur when multiple parties interact and have different evaluations about the possible scenarios that may occur. There are conflicts not only in daily events as in parents deciding which school to choose for their kids, but also among countries deciding how to reduce global warming. The graph model for conflict resolution (GMCR) is an efficient model to represent and analyze conflicts. The GMCR models the conflict considering sequences of moves and countermoves that can be made by the decision makers (DMs) in the course of a conflict. Since DMs may present different behavior in conflicts there are several stability concepts that have been proposed in the GMCR. Matrix representations have been developed for many of these stability concepts in order to provide a more computationally tractable method to find stable states in a conflict. Berge stabilities were recently introduced into the GMCR to analyze the effects of altruistic behavior in the stability analysis of conflicts. In particular, Berge behavior occurs in disputes where DMs act benevolently anticipating a similar response from others such that, in the end, their actions are in their own self-interest. As it happens with other solution GMCR concepts, the logical definitions of Berge stabilities are hard to apply in large conflicts with a high number of states or DMs. In this work, our objective is to propose matrix representations for Berge stabilities so that it becomes computationally tractable to analyze the effect of altruistic behavior in large conflicts. To illustrate the applicability of the proposed matrix representations, we apply the method to the Elmira conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Vieira and Rêgo (2020)

Fig. 2

Source: Xu et al. (2018)

Similar content being viewed by others

References

  • Abalo, K., & Kostreva, M. (2004). Some existence theorems of Nash and Berge equilibria. Applied Mathematics Letters, 17(5), 569–573.

    Article  MathSciNet  Google Scholar 

  • Berge, C. (1957). Théorie générale des jeux á n personnes. No. 138 in Mémorial des sciences mathématiques, Gauthier-Villars, Paris

  • Colman, A. M., Korner, T. W., Musy, O., & Tazdat, T. (2011). Mutual support in games: Some properties of Berge equilibria. Journal of Mathematical Psychology, 55(2), 166–175.

    Article  MathSciNet  Google Scholar 

  • Corley, H. W., & Kwain, P. (2015). An algorithm for computing all Berge equilibria. Game Theory. https://doi.org/10.1155/2015/862842

    Article  MathSciNet  Google Scholar 

  • Courtois, P., Nessah, R., & Tazdat, T. (2015). How to play games? Nash versus Berge behaviour rules. Economics and Philosophy, 31(1), 123–139.

    Article  Google Scholar 

  • Dowlatabadi, N., Banihabib, M. E., Roozbahani, A., & Randhir, T. O. (2020). Enhanced GMCR model for resolving conflicts in a transboundary wetland. Science of the Total Environment, 744, 140816. https://doi.org/10.1016/j.scitotenv.2020.140816

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fang, L., Hipel, K. W., & Kilgour, D. M. (1993). Interactive decision making. Wiley.

    Google Scholar 

  • Fraser, N. M., & Hipel, K. W. (1979). Solving complex conflicts. IEEE Transactions on Systems, Man, and Cybernetics, 9(12), 805–817.

    Article  Google Scholar 

  • Hipel, K. W., & Fang, L. (2021). The graph model for conflict resolution and decision support. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 131–141.

    Article  Google Scholar 

  • Hipel, K. W., Fang, L., & Kilgour, D. M. (2020). The graph model for conflict resolution: Reflections on three decades of development. Group Decision and Negotiation, 29, 11–60.

    Article  Google Scholar 

  • Hipel, K. W., Fang, L., Kilgour, D. M., & Haight, M. (1993). Environmental conflict resolution using the graph model. Proceedings of IEEE Systems Man and Cybernetics Conference, 1, 153–158. https://doi.org/10.1109/ICSMC.1993.384737

    Article  Google Scholar 

  • Howard, N. (1971). Paradoxes of rationality. MIT Press.

    Google Scholar 

  • Kilgour, D. M. (1985). Anticipation and stability in two-person noncooperative games. In U. Luterbacher & M. D. Ward (Eds.), Dynamic models of international conflict (pp. 26–51). Boulder: Lynne Rienner Press.

    Google Scholar 

  • Kilgour, D. M., Hipel, K. W., & Fang, L. (1987). The graph model for conflicts. Automatica, 23(1), 41–55.

    Article  MathSciNet  Google Scholar 

  • Kinsara, R. A., Kilgour, D. M., & Hipel, K. W. (2015). Inverse approach to the graph model for conflict resolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(5), 734–742. https://doi.org/10.1109/TSMC.2014.2376473

    Article  Google Scholar 

  • Larbani, M., & Nessah, R. (2008). A note on the existence of Berge and Berge–Nash equilibria. Mathematical Social Sciences, 55(2), 258–271.

    Article  MathSciNet  Google Scholar 

  • Larbani, M., & Zhukovskii, V. I. (2017). Berge equilibrium in normal form static games: A literature review. Izv Inst Mat Inform Udmurt Gos Univ, 49, 80–110.

    Article  MathSciNet  Google Scholar 

  • Mérő, L. (1998). The prisoner’s dilemma. Moral calculations: Game theory, logic, and human frailty, pp 28–47

  • Nash, J. F. (1950). Equilibrium points in n-person games. National Academy of Sciences, 36(1), 48–49.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Naude, B., Prinsloo, J., & Ladikos, A. (2003). Restorative mediation practices. Southern African Journal of Criminology, 16(5), 10–22.

    Google Scholar 

  • Philpot, S. L., Johnson, P. A., & Hipel, K. W. (2017). Analysis of a brownfield management conflict in Canada. Hydrological Research Letters, 11(3), 141–148.

    Article  ADS  Google Scholar 

  • Rêgo, L. C., & de Oliveira, F. E. (2020). Higher-order sequential stabilities in the graph model for conflict resolution for bilateral conflicts. Group Decision and Negotiation, 29, 601–626.

    Article  Google Scholar 

  • Rêgo, L., & Vieira, G. (2015). Matrix representation of solution concepts in the graph model for conflict resolution with probabilistic preferences. In: The 15th international conference on group decision and negotiation letters, vol 1, pp 239–244

  • Rêgo, L. C., & Vieira, G. I. A. (2017). Symmetric sequential stability in the graph model for conflict resolution with multiple decision makers. Group Decision and Negotiation, 26, 775–792.

    Article  Google Scholar 

  • Rêgo, L. C., & Vieira, G. I. A. (2019). Maximin\(_h\) stability in the graph model for conflict resolution for bilateral conflicts. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(10), 3760–3769.

    Article  Google Scholar 

  • Rêgo, L. C., & Vieira, G. I. A. (2021). Matrix representation of solution concepts in the graph model for conflict resolution with probabilistic preferences and multiple decision makers. Group Decision and Negotiation. https://doi.org/10.1007/s10726-021-09729-y

    Article  Google Scholar 

  • Rêgo, L. C., Vieira, G. I. A., & Kilgour, D. M. (2023). The graph model for conflict resolution and credible maximin stability. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(2), 947–956.

    Article  Google Scholar 

  • Roberts, F. S. (2008). Computer science and decision theory. Annals of Operations Research, 163, 209–253. https://doi.org/10.1007/s10479-008-0328-z

    Article  MathSciNet  Google Scholar 

  • Sabino, E. R., & Rêgo, L. C. (2023). Optimism pessimism stability in the graph model for conflict resolution for multilateral conflicts. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2023.01.038

    Article  MathSciNet  Google Scholar 

  • Vieira, G. I. A., & Rêgo, L. C. (2020). Berge solution concepts in the graph model for conflict resolution. Group Decision and Negotiation, 29, 103–125.

    Article  Google Scholar 

  • Wang, D., Huang, J., & Xu, Y. (2022). Matrix representation of stability definitions in the graph model for conflict resolution with grey-based preferences. Discrete Applied Mathematics, 320, 106–125.

    Article  MathSciNet  Google Scholar 

  • Warrier, U., Shankar, A., & Belal, H. M. (2021). Examining the role of emotional intelligence as a moderator for virtual communication and decision making effectiveness during the COVID-19 crisis: revisiting task technology fit theory. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04216-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, N., Kilgour, D. M., Hipel, K. W., & Xu, Y. (2021). Matrix representation of stability definitions for the graph model for conflict resolution with reciprocal preference relations. Fuzzy Sets and Systems, 409, 32–54. https://doi.org/10.1016/j.fss.2020.03.002

    Article  MathSciNet  Google Scholar 

  • Xu, H., Hipel, K., & Kilgour, D. (2007). Matrix representation of conflicts with two decision-makers. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 1, 1764–1769.

    Google Scholar 

  • Xu, H., Hipel, K., & Kilgour, D. (2009). Matrix representation of solution concepts in multiple-decision-maker graph models. Proceedings of IEEE International Conference on Systems, Man and Cybernetics—Part: A: Systems and Humans, 39(1), 96–108.

    Article  Google Scholar 

  • Xu, H., Hipel, K. W., & Kilgour, D. M. (2009). Matrix representation of solution concepts in multiple-decision-maker graph models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 39(1), 96–108. https://doi.org/10.1109/TSMCA.2009.2007994

    Article  Google Scholar 

  • Xu, H., Kilgour, D.M., Hipel, K.W. (2009c). An algebraic approach to calculating stabilities in the graph model with strength of preference. In: 2009 IEEE international conference on systems, man and cybernetics (pp. 1539–1544). https://doi.org/10.1109/ICSMC.2009.5346310

  • Xu, H., Li, K. W., Hipel, K. W., & Kilgour, D. M. (2009). A matrix approach to status quo analysis in the graph model for conflict resolution. Applied Mathematics and Computation, 212(2), 470–480. https://doi.org/10.1016/j.amc.2009.02.051

    Article  MathSciNet  Google Scholar 

  • Xu, H., Kilgour, D. M., & Hipel, K. W. (2010). An integrated algebraic approach to conflict resolution with three-level preference. Applied Mathematics and Computation, 216(3), 693–707. https://doi.org/10.1016/j.amc.2010.01.054

    Article  MathSciNet  Google Scholar 

  • Xu, H., Kilgour, D. M., Hipel, K. W., & Kemkes, G. (2010). Using matrices to link conflict evolution and resolution in a graph model. European Journal of Operational Research, 207(1), 318–329. https://doi.org/10.1016/j.ejor.2010.03.025

    Article  MathSciNet  Google Scholar 

  • Xu, H., Kilgour, D. M., & Hipel, K. W. (2011). Matrix representation of conflict resolution in multiple-decision-maker graph models with preference uncertainty. Group Decision and Negotiation, 20(6), 755–779. https://doi.org/10.1007/s10726-010-9188-4

    Article  Google Scholar 

  • Xu, H., Li, N., Han, X., Zhang, P. (2011b). An algebraic approach to conflict resolution with hybrid preference in two decision maker graph models. In: 2011 IEEE international conference on systems, man, and cybernetics (pp. 2725–2730). https://doi.org/10.1109/ICSMC.2011.6084085

  • Xu, H., Hipel, K. W., Kilgour, D. M., & Fang, L. (2018). Conflict resolution using the graph model: Strategic interactions in competition and cooperation (Vol. 153). Department of Systems Design Engineering, University of Waterloo.

    Book  Google Scholar 

  • Xu, H., Zhao, J., Ke, G. Y., & Ali, S. (2019). Matrix representation of consensus and dissent stabilities in the graph model for conflict resolution. Discrete Applied Mathematics, 259, 205–217. https://doi.org/10.1016/j.dam.2018.12.006

    Article  MathSciNet  Google Scholar 

  • Zhu, Z., Kilgour, D. M., & Hipel, K. W. (2020). A new approach to coalition analysis within the graph model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6), 2231–2241. https://doi.org/10.1109/TSMC.2018.2811402

    Article  Google Scholar 

  • Zhukovskii, V. I. (1985). Some problems of nonantagonistic differential games. In P. Kenderov (Ed.), Matematiceskie Metody (pp. 103–195).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Chaves Rêgo.

Ethics declarations

Conflict of interest

The authors acknowledge funding from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), under grants 428325/2018-1 and 308980/2021-2, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), financing code 001.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Computational codes

figure a
figure b
figure c
figure d
figure e

Matrices for the Elmira conflict

We now show the matrices that are inputs for the Berge stabilities calculations in the Elmira conflict for DM UR. First, the accessibility and strict preference matrices for DM UR are given by:

$$\begin{aligned} J_{UR} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] \;\;\hbox { and }\;\; P^+_{UR} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ \end{array} \right] . \end{aligned}$$

Then, the matrices that represent the legal sequence of unilateral moves and unilateral improvements for the coalition formed by the opponents of DM UR are given by:

$$\begin{aligned}{} & {} J_{N-\{UR\}} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] \;\;\hbox { and } \\{} & {} J_{N-\{UR\}}^+ = \left[ \begin{array}{ccccccccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] . \end{aligned}$$

Finally, we display matrices \(M_{UR}^{Berge}\), \(M_{UR}^{WB}\), \(M_{UR}^{SMB}\), \(M_{UR}^{SMB}\), \(M_{UR}^{WMB}\), \(M_{UR}^{WSMB}\), whose elements of the main diagonal are equal to zero if and only if the corresponding state satisfies the appropriate Berge stability for DM UR.

$$\begin{aligned}{} & {} M_{UR}^{Berge} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 2 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 3 &{}\quad 2 &{}\quad 0 &{}\quad 2 &{}\quad 3 &{}\quad 2 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 2 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 3 &{}\quad 2 &{}\quad 0 &{}\quad 2 &{}\quad 3 &{}\quad 3 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] \hbox {,}\\{} & {} M_{UR}^{WB} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] , \end{aligned}$$
$$\begin{aligned}{} & {} M_{UR}^{MB} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 4 &{}\quad 3 &{}\quad 0 &{}\quad 2 &{}\quad 5 &{}\quad 3 &{}\quad 1 &{}\quad 3\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 3 &{}\quad 2 &{}\quad 0 &{}\quad 2 &{}\quad 3 &{}\quad 2 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 4 &{}\quad 3 &{}\quad 1 &{}\quad 3 &{}\quad 5 &{}\quad 4 &{}\quad 2 &{}\quad 3\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 2 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 3 &{}\quad 2 &{}\quad 0 &{}\quad 2 &{}\quad 3 &{}\quad 3 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] \hbox {,}\\{} & {} M_{UR}^{SMB} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 13 &{}\quad 11 &{}\quad 0 &{}\quad 4 &{}\quad 14 &{}\quad 11 &{}\quad 2 &{}\quad 5\\ 0 &{}\quad 4 &{}\quad 4 &{}\quad 0 &{}\quad 2 &{}\quad 4 &{}\quad 4 &{}\quad 0 &{}\quad 2\\ 0 &{}\quad 6 &{}\quad 5 &{}\quad 0 &{}\quad 2 &{}\quad 6 &{}\quad 5 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 2 &{}\quad 2 &{}\quad 0 &{}\quad 1 &{}\quad 2 &{}\quad 2 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 13 &{}\quad 11 &{}\quad 1 &{}\quad 5 &{}\quad 14 &{}\quad 13 &{}\quad 3 &{}\quad 5\\ 0 &{}\quad 4 &{}\quad 4 &{}\quad 0 &{}\quad 2 &{}\quad 5 &{}\quad 4 &{}\quad 2 &{}\quad 2\\ 0 &{}\quad 6 &{}\quad 5 &{}\quad 0 &{}\quad 2 &{}\quad 6 &{}\quad 6 &{}\quad 1 &{}\quad 2\\ 0 &{}\quad 2 &{}\quad 2 &{}\quad 0 &{}\quad 1 &{}\quad 2 &{}\quad 2 &{}\quad 1 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] , \end{aligned}$$
$$\begin{aligned}{} & {} M_{UR}^{WMB} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 2 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 2 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] \;\;\hbox { and }\\{} & {} M_{UR}^{WSMB} = \left[ \begin{array}{ccccccccc} 0 &{}\quad 5 &{}\quad 3 &{}\quad 0 &{}\quad 0 &{}\quad 5 &{}\quad 3 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 4 &{}\quad 4 &{}\quad 0 &{}\quad 2 &{}\quad 4 &{}\quad 4 &{}\quad 0 &{}\quad 2\\ 0 &{}\quad 2 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 2 &{}\quad 1 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 2 &{}\quad 2 &{}\quad 0 &{}\quad 1 &{}\quad 2 &{}\quad 2 &{}\quad 0 &{}\quad 1\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \end{array} \right] . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rêgo, L.C., Cordeiro, Y.S. Matrix representations of berge stabilities in the graph model for conflict resolution. Ann Oper Res 332, 125–148 (2024). https://doi.org/10.1007/s10479-023-05555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05555-4

Keywords

Navigation