Skip to main content
Log in

The Cauchy Problem for the Camassa-Holm-Novikov Equation

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem for the Camassa-Holm-Novikov equation. First, we establish the local well-posedness and the blow-up scenario. Second, infinite propagation speed is obtained as the nontrivial solution u(x, t) does not have compact x-support for any t > 0 in its lifespan, although the corresponding u0(x) is compactly supported. Then, the global existence and large time behavior for the support of the momentum density are considered. Finally, we study the persistence property of the solution in weighted Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandolese L. Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces. Int Math Res Not, 2012, 22: 5161–5181

    Article  MATH  Google Scholar 

  2. Bressan A, Constantin A. Global conservative solutions of the Camassa-Holm equation. Arch Ration Mech Anal, 2007, 183: 215–239

    Article  MATH  Google Scholar 

  3. Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5: 1–27

    Article  MATH  Google Scholar 

  4. Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661–1664

    Article  MATH  Google Scholar 

  5. Constantin A, Escher J. Well-posedness, global existence and blow-up phenomenon for a periodic quasilinear hyperbolic equation. Comm Pure Appl Math, 1998, 51: 475–504

    Article  MATH  Google Scholar 

  6. Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math, 1998, 181: 229–243

    Article  MATH  Google Scholar 

  7. Constantin A, Gerdjikov V, Ivanov R. Inverse scattering transform for the Camassa-Holm equation. Inverse Problems, 2006, 22: 2197–2207

    Article  MATH  Google Scholar 

  8. Constantin A, Strauss W. Stability of peakons. Comm Pure Appl Math, 2000, 53: 603–610

    Article  MATH  Google Scholar 

  9. Gröchenig K. Weight functions in time-frequency analysis//Rodino L, Schulze B W, Wong M W. Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis. Providence, RI: American Mathematical Society, 2007: 343–366

    MATH  Google Scholar 

  10. Himonas A, Holliman C. The Cauchy problem for the Novikov equation. Nonlinearity, 2012, 25: 449–479

    Article  MATH  Google Scholar 

  11. Himonas A, Holmes J. Hölder continuity of the solution map for the Novikov equation. J Math Phys, 2013, 54: 061501

    Article  MATH  Google Scholar 

  12. Himonas A, Misiolek G, Ponce G, Zhou Y. Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Comm Math Phys, 2007, 271: 511–522

    Article  MATH  Google Scholar 

  13. Jiang Z, Ni L. Blow-up phenomenon for the integrable Novikov equation. J Math Anal Appl, 2012, 385: 551–558

    Article  MATH  Google Scholar 

  14. Jiang Z, Ni L, Zhou Y. Wave breaking of the Camassa-Holm equation. J Nonlinear Sci, 2012, 22: 235–245

    Article  MATH  Google Scholar 

  15. Jiang Z, Zhou Y, Zhu M. Large time behavior for the support of momentum density of the Camassa-Holm equation. J Math Phys, 2013, 54: 081503

    Article  MATH  Google Scholar 

  16. Kato T. Quasi-linear equations of evolution with application to partial differential equations//Everitt W N. Spectral Theory and Differential Equations. Berlin: Springer, 1975: 25–70

    Chapter  Google Scholar 

  17. Lai S. Global weak solutions to the Novikov equation. J Funct Anal, 2013, 265: 520–544

    Article  MATH  Google Scholar 

  18. Lenells J. Conservation laws of the Camassa-Holm equation. J Phys A, 2005, 38: 869–880

    Article  MATH  Google Scholar 

  19. Li Y, Olver P. Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J Differential Equations, 2000, 162: 27–63

    Article  MATH  Google Scholar 

  20. McKean H. Breakdown of a shallow water equation. Asian J Math, 1998, 2: 767–774

    Article  MATH  Google Scholar 

  21. Mi Y, Mu C. On the Cauchy problem for the modified Novikov equation with peakon solutions. J Differential Equations, 2013, 254: 961–982

    Article  MATH  Google Scholar 

  22. Ni L, Zhou Y. A new asymptotic behavior of solutions to the Camassa-Holm equation. Proc Amer Math Soc, 2012, 140: 607–614

    Article  MATH  Google Scholar 

  23. Ni L, Zhou Y. Well-posedness and persistence properties for the Novikov equation. J Differential Equations, 2011, 250: 3002–3021

    Article  MATH  Google Scholar 

  24. Novikov V. Generalisations of the Camassa-Home equation. J Phys A, 2009, 42: 342002

    Article  MATH  Google Scholar 

  25. Reyes E. Geometric integrability of the Camassa-Holm equation. Lett Math Phys, 2002, 59: 117–131

    Article  MATH  Google Scholar 

  26. Wu X L, Yin Z Y. Well-posedness and global existence for the Novikov equation. Ann Sc Norm Super Pisa Cl Sci, 2012, 11(3): 707–727

    MATH  Google Scholar 

  27. Yan W, Li Y, Zhang Y. The Cauchy problem for the integrable Novikov equation. J Differential Equations, 2012, 253: 298–318

    Article  MATH  Google Scholar 

  28. Zhou S, Mu C, Wang L. Well-posedness, blow-up phenomena and global existence for the generalized b-equation with higher-order nonlinearities and weak dissipation. Discrete Contin Dyn Syst, 2014, 34: 843–867

    Article  MATH  Google Scholar 

  29. Zhou S, Mu C. The properties of solutions for a generalized b-family equation with peakons. J Nonlinear Sci, 2013, 23: 863–889

    Article  MATH  Google Scholar 

  30. Zhou S, Yang L, Mu C. Global dissipative solutions of the Novikov equation. Commun Math Sci, 2018, 16: 1615–1633

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihong Jiang  (姜在红).

Additional information

This work was partially supported by the National Natural Science Foundation of China (12071439), the Zhejiang Provincial Natural Science Foundation of China (LY19A010016) and the Natural Science Foundation of Jiangxi Province (20212BAB201016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Jiang, Z. The Cauchy Problem for the Camassa-Holm-Novikov Equation. Acta Math Sci 43, 736–750 (2023). https://doi.org/10.1007/s10473-023-0220-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0220-6

Key words

2010 MR Subject Classification

Navigation