Skip to main content
Log in

The Cauchy Problem and Multi-peakons for the mCH-Novikov-CH Equation with Quadratic and Cubic Nonlinearities

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper investigates the Cauchy problem of a generalized Camassa-Holm equation with quadratic and cubic nonlinearities (alias the mCH-Novikov-CH equation), which is a generalization of some special equations such as the Camassa-Holm (CH) equation, the modified CH (mCH) equation (alias the Fokas-Olver-Rosenau-Qiao equation), the Novikov equation, the CH-mCH equation, the mCH-Novikov equation, and the CH-Novikov equation. We first show the local well-posedness for the strong solutions of the mCH-Novikov-CH equation in Besov spaces by means of the Littlewood-Paley theory and the transport equations theory. Then, the Hölder continuity of the data-to-solution map to this equation are exhibited in some Sobolev spaces. After providing the blow-up criterion and the precise blow-up quantity in light of the Moser-type estimate in the Sobolev spaces, we then trace a portion and the whole of the precise blow-up quantity, respectively, along the characteristics associated with this equation, and obtain two kinds of sufficient conditions on the gradient of the initial data to guarantee the occurance of the wave-breaking phenomenon. Finally, the non-periodic and periodic peakon and multi-peakon solutions for this equation are also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anco, S.C., Recio, E.: A general family of multi-peakon equations and their properties. J. Phys. A: Math. Theor. 52, 125203 (2019)

    MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen wissenschaften, vol. 343. Springer, Berlin-Heidelberg-New York (2011)

    MATH  Google Scholar 

  3. Beals, R., Sattinger, D., Szmigielski, J.: Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Beals, R., Sattinger, D., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–57 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa-Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1–27 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Barostichi, R.F., Himonas, A.A., Petronilho, G.: Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems. J. Funct. Anal. 270, 330–358 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Camassa, R., Holm, D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    MATH  Google Scholar 

  11. Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa-Holm equation. Commun. Math. Phys. 358, 295–341 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Chemin, J.: Localization in Fourier space and Navier-Stokes system, in: Phase Space Analysis of Partial Differential Equations. Proceedings, in: CRM Series, Pisa, (2004), pp. 53-136

  13. Chen, M., Hu, Q., Liu, Y.: The shallow-water models with cubic nonlinearity, submitted for publication

  14. Chen, M., Liu, Y., Qu, C., Zhang, H.: Oscillation-induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Chen, M., Guo, F., Liu, Y., Qu, C.: Analysis on the blow-up of solutions to a class of integrable peakon equations. J. Funct. Anal. 270, 2343–2374 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Chou, K., Qu, C.: Integrable equations arising from motions of plane curves I. Physica D 162, 9–33 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 23–535 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51, 475–504 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Constantin, A., Gerdjikov, V., Ivanov, I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Constantin, A., Gerdjikov, V., Ivanov, I.: Generalized Fourier transform for the Camassa-Holm hierarchy. Inverse Probl. 23, 1565–97 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. 211, 45–61 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Constantin, A., Strauss, W.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270, 140–148 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Dai, H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Danchin, R.: A few remarks on the Camassa-Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Danchin, R.: Fourier Analysis Methods for PDEs, Lecture Notes, 14 November (2003)

  34. Dachin, R.: A note on well-posedness for Camassa-Holm equation. J. Differ. Equ. 192, 429–444 (2003)

    MathSciNet  Google Scholar 

  35. Dullin, H.R., Gottwald, G.A., Holm, D.D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 (2001)

    Google Scholar 

  36. Fisher, M., Schiff, J.: The Camassa-Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Fokas, A.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Fokas, A., Fuchssteiner, B.: Symplectic structures, their Backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    MathSciNet  MATH  Google Scholar 

  39. Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Prog. Theor. Phys. 68, 1082–104 (1982)

    MathSciNet  MATH  Google Scholar 

  40. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa- Holm equation. Physica D 95, 229–243 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Fu, Y., Gui, G., Liu, Y., Qu, C.: On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity. J. Differ. Equ. 255, 1905–1938 (2013)

    MATH  Google Scholar 

  42. Gel’fand, I., Shilov, G.: Generalized functions. Academic Press, New York (1964)

    MATH  Google Scholar 

  43. Górka, P., Reyes, E.G.: The modified Camassa-Holm equation. Int. Math. Res. Notes 2011, 2617–2649 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Grayshan, K.: Peakon solutions of the Nivikov equation and properties of the data-to-solution map. J. Math. Anal. Appl. 397, 515–521 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Grayshan, K., Himonas, A.A.: Equations with peakon traveling wave solutions. Adv. Dyn. Sys. Appl. 8, 217–232 (2013)

    MathSciNet  Google Scholar 

  46. Gui, G., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa-Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Gui, G., Liu, Y., Olver, P., Qu, C.: Wave-breaking and peakons for a modified Camassa-Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Guo, Z.G.: On an integrable Camassa-Holm type equation with cubic nonlinearity. Nonlinear Anal. Real World Appl. 34, 225–232 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation. Nonlinear Anal. 95, 499–529 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Himonas, A., Mantzavinos, D.: Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation. J. Nonlinear Sci. 24, 1105–1124 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Himonas, A., Misiolek, G.: Analyticity of the Cauchy problem for an integrable evolution equation. Math. Ann. 327, 575–584 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Himonas, A., Misiolek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Holden, H., Raynaud, X.: Global conservative solutions of the Camassa-Holm equations-a Lagrangian point of view. Commun. Partial Differ. Equ. 32, 1511–1549 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Holden, H., Raynaud, X.: Dissipative solutions for the Camassa-Holm equation. Discrete Contin. Dyn. Syst. 24, 1047–1112 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Hone, A., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A: Math. Theor. 41, 372002 (2008)

    MathSciNet  MATH  Google Scholar 

  57. Hone, W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov cubically nonlinear integrable Camassa-Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Jiang, Z., Ni, L.: Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Kouranbaeva, S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–68 (1999)

    MathSciNet  MATH  Google Scholar 

  61. Lai, S.: Global weak solutions to the Novikov equation. J. Funct. Anal. 265, 520–544 (2013)

    MathSciNet  MATH  Google Scholar 

  62. Lai, S., Li, N., Wu, Y.: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682–691 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–99 (2004)

    MathSciNet  MATH  Google Scholar 

  64. Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differential Equations 217, 393–430 (2005)

    MathSciNet  MATH  Google Scholar 

  65. Liu, X.: The periodic Cauchy problem for a combined CH-mCH integrable equation, Nonlinear. Analysis 143, 138–154 (2016)

    MathSciNet  MATH  Google Scholar 

  66. Liu, X., Qiao, Z., Yin, Z.: On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure. Appl. Anal. 13, 1283–1304 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Liu, X., Liu, Y., Qu, C.: Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation. Adv. Math. 255, 1–37 (2014)

    MathSciNet  MATH  Google Scholar 

  68. Liu, Y., Qu, Z., Zhang, H.: On the blow-up of solutions to the integrable modified Camassa-Holm equation. Anal. Appl. 4, 355–368 (2014)

    MathSciNet  MATH  Google Scholar 

  69. Luo, W., Yin, Z.: Well-posedness and persistence property for a four-component Novikov system with peakon solutions. Monatsh. Math. 180, 853–891 (2016)

    MathSciNet  MATH  Google Scholar 

  70. Mi, Y., Liu, Y., Huang, D., Guo, B.: Qualitative analysis for the new shallow-water model with cubic nonlinearity. J. Differ. Equ. 269, 5228–5279 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Novikov, V.: Generalizations of the Camassa-Holm equation. J. Phys. A 42, 342002 (2009)

    MathSciNet  MATH  Google Scholar 

  72. Ni, L., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011)

    MathSciNet  MATH  Google Scholar 

  73. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    MathSciNet  Google Scholar 

  74. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    MathSciNet  MATH  Google Scholar 

  75. Qiao, Z., Li, X.: An integrable equation with nonsmooth solitons. Theor. Math. Phys. 267, 584–589 (2011)

    MathSciNet  MATH  Google Scholar 

  76. Qiao, Z., Xia, B., Li, J.: Integrable system with peakon, weak kink, and kink-peakon interactional solutions, arXiv: 1205.2028

  77. Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    MathSciNet  MATH  Google Scholar 

  78. Reyes, E.G.: Geometric integrability of the Camassa-Holm equation. Lett. Math. Phys. 59, 117–131 (2002)

    MathSciNet  MATH  Google Scholar 

  79. Rodríguez-Blanco, G.: On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46, 309–327 (2001)

    MathSciNet  MATH  Google Scholar 

  80. Taylor, M.: Commutator estimates. Proc. Am. Math. Soc. 131, 1501–1507 (2003)

    MathSciNet  MATH  Google Scholar 

  81. Tiğlay, F.: The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Not. 2011, 4633–4648 (2011)

    MathSciNet  MATH  Google Scholar 

  82. Wang, L., Yan, Z.: Data-driven peakon and periodic peakon travelling wave solutions of some nonlinear dispersive equations, (2021) arXiv: 2101.04371

  83. Whitham, G.B.: Linear and nonlinear waves. Wiley, New York (1980)

    MATH  Google Scholar 

  84. Wu, X., Yin, Z.: Global weak solutions for the Novikov equation. J. Phys. A: Math. Theor. 44, 055202 (2011)

    MathSciNet  MATH  Google Scholar 

  85. Xia, B., Qiao, Z., Li, J.: An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions. Commun. Nonlinear Sci. Numer. Simulat. 63, 292–306 (2018)

    MathSciNet  MATH  Google Scholar 

  86. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 (2000)

    MathSciNet  MATH  Google Scholar 

  87. Xin, Z., Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. Partial Differ. Equ. 27, 1815–1844 (2002)

    MathSciNet  MATH  Google Scholar 

  88. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 253, 298–318 (2012)

    MathSciNet  MATH  Google Scholar 

  89. Yan, W., Li, Y., Zhang, Y.: The Cauchy problem for the Novikov equation. Nonlinear Differ. Equ. Appl. 20, 1157–1169 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NSF of China under Grants Nos. 11925108 and 11731014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Basics Properties of the Littlewood-Paley Theory

Let \(B(x_{0},r)\) be the open ball centered at \(x_{0}\) with radius r\({\mathcal {C}}\equiv \{\xi \in {\mathbb {R}}^{d} | 4/3\le |\xi |\le 8/3\}\), and \(\mathcal {{\tilde{C}}}\equiv B(0,2/3)+{\mathcal {C}}.\) Then there are two radial functions \(\chi \in {\mathcal {D}}(B(0,4/3))\) and \(\varphi \in {\mathcal {D}}({\mathcal {C}})\) satisfying

$$\begin{aligned} \left\{ \begin{array}{l} \chi (\xi )+\sum _{q \ge 0} \varphi (2^{-q} \xi )=1,\quad 1/3 \le \chi ^2(\xi )+\sum _{q \ge 0} \varphi ^2(2^{-q} \xi ) \le 1 \quad (\forall \xi \in {\mathbb {R}}^{d}),\\ |q-q^{\prime }| \ge 2 \Rightarrow {\text {Supp}} \varphi (2^{-q} \cdot ) \cap {\text {Supp}} \varphi (2^{-q^{\prime }} \cdot )=\varnothing , \\ q \ge 1 \Rightarrow {\text {Supp}} \chi (\cdot ) \cap {\text {Supp}} \varphi (2^{-q^{\prime }} \cdot )=\varnothing ,\quad |q-q^{\prime }| \ge 5 \Rightarrow 2^{q^{\prime }} \widetilde{{\mathcal {C}}} \cap 2^{q} {\mathcal {C}}=\varnothing . \end{array}\right. \end{aligned}$$

The dyadic operators \(\Delta _{q}\) and \(S_{q}\) acting on \(u(t,x)\in S'({\mathbb {R}}^d)\) are defined as

$$\begin{aligned} \begin{array}{l} \Delta _{q} u=\left\{ \begin{array}{ll} 0, &{} q \le -2, \\ \chi (D) u=\int _{{\mathbb {R}}^{d}} {\tilde{h}}(y) u(x-y)dy, &{} q=-1, \\ \varphi \left( 2^{-q} D\right) u=2^{q d} \int _{{\mathbb {R}}^{d}} h\left( 2^{q} y\right) u(x-y) dy, &{} q \ge 0, \end{array}\right. \\ S_{q} u=\sum _{q^{\prime } \le q-1} \Delta _{q^{\prime }} u, \end{array} \end{aligned}$$

where \(h = {\mathcal {F}}^{-1} \varphi \) and \( {\tilde{h}} = {\mathcal {F}}^{-1} \chi \) with \({\mathcal {F}}^{-1}\) denoting the inverse Fourier transform.

The Besov spaces is \(B_{p, r}^{s}({\mathbb {R}}^{d})=\left\{ u \in S^{\prime }\, \big |\, \Vert u\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}=\big (\sum _{j \ge -1} 2^{r j s}\Vert \Delta _{j} u\Vert _{L^{p}({\mathbb {R}}^{d})}^{r}\big )^{1/r} <\infty \right\} .\) With the above-defined Besov spaces, we next recall some of their properties.

Lemma 12.1

(Embedding property) [2, 12, 33] Suppose \(1 \le p_{1} \le p_{2} \le \infty \), \(1 \le r_{1} \le r_{2} \le \infty \) and s be real. Then it holds that \(B_{p_{1}, r_{1}}^{s}({\mathbb {R}}^{d}) \hookrightarrow B_{p_{2}, r_{2}}^{s-d(1/p_1-1/p_2)} ({\mathbb {R}}^{d})\). If \(s>d/p\) or \(s=d/p,\, r=1,\) then there holds \(B_{p, r}^{s}({\mathbb {R}}^{d}) \hookrightarrow L^{\infty }({\mathbb {R}}^{d})\).

Lemma 12.2

(Interpolation) [2, 12, 33] Let \(s_1,\, s_2\) be real numbers with \(s_{1}<s_{2}\) and \(\theta \in (0,1).\) Then there exists a constant C such that

$$\begin{aligned} \Vert u\Vert _{B_{p, r}^{\theta s_{1}+(1-\theta ) s_{2}}} \le \Vert u\Vert _{B_{p, r}^{s_{1}}}^{\theta }\Vert u\Vert _{B_{p, r}^{s_{2}}}^{(1-\theta )},\quad \Vert u\Vert _{B_{p, 1}^{\theta s_{1}+(1-\theta ) s_{2}}} \le \frac{C}{s_{2}-s_{1}}\frac{1}{\theta (1-\theta )} \Vert u\Vert _{B_{p, \infty }^{s_{1}}}^{\theta } \Vert u\Vert _{B_{p, \infty }^{s_{2}}}^{(1-\theta )}, \end{aligned}$$

where \((p, r) \in [1, \infty ]^{2}\).

Lemma 12.3

(Product law) [2, 12, 33] Let \((p, r)\in [1, \infty ]^{2}\) and s be real. Then \( \Vert u v\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})} \le C(\Vert u\Vert _{L^{\infty }({\mathbb {R}}^{d})}\Vert v\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})} +\Vert u\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})} \Vert v\Vert _{L^{\infty }({\mathbb {R}}^{d})}), \) namely, the space \(L^{\infty }({\mathbb {R}}^{d}) \cap B_{p, r}^{s}({\mathbb {R}}^{d})\) is an algebra. Moreover, if \(s>d/p\) or \(s=d/p,\, r=1,\) then there holds \( \Vert u v\Vert _{B_{p, r}^{s}\left( {\mathbb {R}}^{d}\right) } \le C\Vert u\Vert _{B_{p, r}^{s}\left( {\mathbb {R}}^{d}\right) }\Vert v\Vert _{B_{p, r}^{s}\left( {\mathbb {R}}^{d}\right) }. \)

Lemma 12.4

(Moser-type estimates) [2, 32] Let \(s>\max \{d/p,\, d/2\}\) and \((p, r)\in [1, \infty ]^{2}\). Then, for any \(a \in B_{p, r}^{s-1}({\mathbb {R}}^{d})\) and \(b \in B_{p, r}^{s}({\mathbb {R}}^{d}),\) there holds \( \Vert a b\Vert _{B_{p, r}^{s-1}({\mathbb {R}}^{d})} \le C\Vert a\Vert _{B_{p, r}^{s-1}({\mathbb {R}}^{d})}\Vert b\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}. \)

The following Lemma is useful for proving the blow-up criterion.

Lemma 12.5

(Moser-type estimates) [46, 47] Let \(s \ge 0.\) Then one has

$$\begin{aligned} \begin{aligned} \Vert f g\Vert _{H^{s}({\mathbb {R}})}&\le C(\Vert f\Vert _{H^{s}({\mathbb {R}})}\Vert g\Vert _{L^{\infty }({\mathbb {R}})} +\Vert f\Vert _{L^{\infty }({\mathbb {R}})}\Vert g\Vert _{H^{s}({\mathbb {R}})}), \\ \Vert f \partial _{x} g\Vert _{H^{s}({\mathbb {R}})}&\le C(\Vert f\Vert _{H^{s+1}({\mathbb {R}})}\Vert g\Vert _{L^{\infty }({\mathbb {R}})} +\Vert f\Vert _{L^{\infty }({\mathbb {R}})}\Vert \partial _{x}g\Vert _{H^{s}({\mathbb {R}})}), \end{aligned} \end{aligned}$$

where C’s are constants independent of f and g.

Lemma 12.6

[2] Let \(s \in {\mathbb {R}}\) and \(1 \le p, r \le \infty \). Then the Besov spaces have the following properties:

  • \(B_{p, r}^{s}({\mathbb {R}}^{d})\) is a Banach space and continuously embedding into \({\mathcal {S}}^{\prime }({\mathbb {R}}^{d}),\) where \({\mathcal {S}}^{\prime }({\mathbb {R}}^{d})\) is the dual space of the Schwartz space \({\mathcal {S}}({\mathbb {R}}^{d})\);

  • If \(p, r<\infty ,\) then \({\mathcal {S}}({\mathbb {R}}^{d})\) is dense in \(B_{p, r}^{s}({\mathbb {R}}^{d})\);

  • If \(u_{n}\) is a bounded sequence of \(B_{p, r}^{s}({\mathbb {R}}^{d}),\) then an element \(u \in B_{p, r}^{s}({\mathbb {R}}^{d})\) and a subsequence \(u_{n_{k}}\) exist such that \(\lim _{k \rightarrow \infty } u_{n_{k}}=u \text{ in } {\mathcal {S}}^{\prime }({\mathbb {R}}^{d}) \text{ and } \Vert u\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})} \le C \liminf _{k \rightarrow \infty }\Vert u_{n_{k}}\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}.\)

Appendix B. Some Lemmas in the Theory of the Transport Equation

We recall some a priori estimates [2, 32] for the following transport equation

$$\begin{aligned} \phi _{t}+v\cdot \nabla \phi =\omega , \quad \left. \phi \right| _{t=0}=\phi _{0}. \end{aligned}$$
(B.1)

Lemma 12.7

[2, 32] Let \(1 \le p \le p_{1} \le \infty ,\) \(1 \le r \le \infty \) and \(s \ge -d \min (1/p_1,\, 1-1/p)\). Let \(\phi _{0} \in B_{p, r}^{s}({\mathbb {R}}^{d})\). \(\omega \in L^{1}([0, T] ; B_{p, r}^{s}({\mathbb {R}}^{d}))\) and \(\nabla v \in L^{1}([0, T] ; B_{p, r}^{s}({\mathbb {R}}^{d}) \cap L^{\infty }({\mathbb {R}}^{d})),\) then there exists a unique solution \(\phi \in L^{\infty }([0, T] ; B_{p, r}^{s}({\mathbb {R}}^{d}))\) to Eq. (B.1) satisfying:

$$\begin{aligned} \Vert \phi \Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}\le & {} \Vert \phi _{0}\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})} +\int _{0}^{t}[\Vert \omega (t^{\prime })\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}+C U_{p_{1}}(t^{\prime })\Vert \phi (t^{\prime })\Vert _{B_{p, r}^{s} ({\mathbb {R}}^{d})}] d t^{\prime },\nonumber \\ \end{aligned}$$
(B.2)
$$\begin{aligned} \Vert \phi \Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}\le & {} \left[ \Vert \phi _{0}\Vert _{B_{p, r}^{s}({\mathbb {R}}^{d})}+\int _{0}^{t}\Vert \omega (t^{\prime })\Vert _{B_{p, r}^{s} ({\mathbb {R}}^{d})}e^{-C U_{p_{1}}(t^{\prime })} d t^{\prime }\right] e^{C U_{p_1}(t)}, \end{aligned}$$
(B.3)

where \(U_{p_{1}}(t)=\int _{0}^{t}\Vert \nabla v\Vert _{B_{p_{1}, \infty }^{d/p_{1}}({\mathbb {R}}^{d}) \cap L^{\infty }({\mathbb {R}}^{d})} d t^{\prime }\) if \(s<1+d/p_{1}, U_{p_{1}}(t)=\int _{0}^{t}\Vert \nabla v\Vert _{B_{p_{1}, r}^{s-1}\left( {\mathbb {R}}^{d}\right) } d t^{\prime }\) if \(s>1+d/p_{1}\) or \(s=1+d/p_{1},\, r=1,\) and C is a constant depending only on \(s, p, p_{1}\), and r.

Lemma 12.8

[2] Let \(s \ge -d \min (1/p_1, 1-1/p).\) Let \(\phi _{0} \in B_{p, r}^{s}({\mathbb {R}}^{d})\), \(\omega \in L^{1}([0, T] ; B_{p, r}^{s} ({\mathbb {R}}^{d}))\) and \(v \in L^{\rho }([0, T]; B_{\infty , \infty }^{-M}({\mathbb {R}}^{d}))\) for some \(\rho >1\) and \(M>0\) be a time-dependent vector field satisfying

$$\begin{aligned} \nabla v\in \left\{ \begin{array}{ll} L^{1}([0, T] ; B_{p_{1}, \infty }^{d/p}({\mathbb {R}}^{d})), &{} \mathrm{if }\,\, s<1+d/p_{1}, \\ L^{1}\left( [0, T] ; B_{p_{1}, \infty }^{s-1}\left( {\mathbb {R}}^{d}\right) \right) , &{} \mathrm{if }\,\, s>1+d/p_1\,\, \mathrm{or } \,\, s=1+d/p_1 \,\, \mathrm{and } \,\, r=1. \end{array}\right. \end{aligned}$$

Then, Eq. (B.1) has a unique solution \(\phi \in {\mathcal {C}}([0, T] ; B_{p, r}^{s}({\mathbb {R}}^{d}))\) for \(r<\infty \), or \(\phi \in (\bigcap _{s^{\prime }<s} {\mathcal {C}}([0, T]; B_{p, \infty }^{s^{\prime }}({\mathbb {R}}^{d}))) \cap {\mathcal {C}}_{w}([0, T] ; B_{p, \infty }^{s}({\mathbb {R}}^{d})))\) for \(r=\infty \). Furthermore, the inequalities (B.2)-(B.3) hold.

Lemma 12.9

(A priori estimate in the Sobolev spaces) [2, 46] Let \(0\le \sigma <1\). Let \(\phi _{0} \in H^{\sigma },\, \omega \in L^{1}(0, T ; H^{\sigma })\) and \(\partial _{x} v \in L^{1}(0, T ; L^{\infty }).\) Then the solution \(\phi \) to Eq. (B.1) belongs to \(C([0, T] ; H^{\sigma }).\) More precisely, there is a constant C depending only on \(\sigma \) such that

$$\begin{aligned} \Vert \phi \Vert _{H^{\sigma }}\le \Vert \phi _{0}\Vert _{H^{\sigma }} +\int _{0}^{t}[\Vert \omega (\tau )\Vert _{H^{\sigma }}+CU^{\prime }(\tau )\Vert \phi (\tau )\Vert _{H^{\sigma }}] d\tau ,\quad U(t)=\int _{0}^{t}\Vert \partial _{x} v(\tau )\Vert _{L^{\infty }} \text{ d } \tau . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Yan, Z. & Guo, B. The Cauchy Problem and Multi-peakons for the mCH-Novikov-CH Equation with Quadratic and Cubic Nonlinearities. J Dyn Diff Equat 35, 3295–3354 (2023). https://doi.org/10.1007/s10884-021-10115-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10115-0

Keywords

Mathematics Subject Classification

Navigation