Skip to main content
Log in

Global Conservative Solutions of the Camassa–Holm Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper develops a new approach in the analysis of the Camassa–Holm equation. By introducing a new set of independent and dependent variables, the equation is transformed into a semilinear system, whose solutions are obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we obtain a semigroup of global solutions, depending continuously on the initial data. Our solutions are conservative, in the sense that the total energy equals a constant, for almost every time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn N. (1976) Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57, 147–190

    MathSciNet  Google Scholar 

  2. Beals R., Sattinger D., Szmigielski J. (1999) Multi-peakons and a theorem of Stieltjes. Inverse Problems 15, L1–L4

    Article  ADS  MathSciNet  Google Scholar 

  3. Beals R., Sattinger D., Szmigielski J. (2000) Multipeakons and the classical moment problem. Adv. Math. 154, 229–257

    Article  MathSciNet  Google Scholar 

  4. Beals R., Sattinger D., Szmigielski J. (2001) Peakon-antipeakon interaction. J. Nonlinear Math. Phys. 8, 23–27

    Article  MathSciNet  Google Scholar 

  5. Bressan A., Zhang, P., Zheng, Y. On asymptotic variational wave equations. Arch. Ration Mech. Anal., to appear

  6. Camassa R., Holm D.D. (1993) An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664

    Article  ADS  MathSciNet  Google Scholar 

  7. Constantin A. (2000) Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann.Inst. Fourier (Grenoble) 50, 321–362

    MathSciNet  Google Scholar 

  8. Constantin A. (2001) On the scattering problem for the Camassa–Holm equation. Proc. Roy. Soc. Lond Ser. A math. phys. Eng. Sci. 457, 953–970

    Article  ADS  MathSciNet  Google Scholar 

  9. Constantin A., Escher J. (1998) Global existence and blow-up for a shallow water equation. Ann. Sc Norm. Pisa Super. Sci. 26(5): 303–328

    MathSciNet  Google Scholar 

  10. Constantin A., Escher J. (1998) Wave breaking for nonlinear nonlocal shallow water equations. Acta. Math. 181, 229–243

    Article  MathSciNet  Google Scholar 

  11. Constantin A., McKean H.P. (1999) A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982

    Article  MathSciNet  Google Scholar 

  12. Constantin A., Molinet L. (2000) Global weak solutions for a shallow water equation. Comm. Math. Phys. 211, 45–61

    Article  ADS  MathSciNet  Google Scholar 

  13. Constantin A., Strauss W. (2000) Stability of peakons. Comm. Pure Appl. Math. 53, 603–610

    Article  MathSciNet  Google Scholar 

  14. Diéudonne J. (1960) Foundations of Modern Analysis. Academic Press, New York

    MATH  Google Scholar 

  15. Evans L.C., Gariepy R.F. (1992) Measure Theory andFine Properties of Functions. CRC Press, Boca Raton, FL

    Google Scholar 

  16. Fokas A., Fuchssteiner B. (1981) Symplectic structures, their Bäcklund transformation and hereditary symmetries. PhysD 4, 47–66

    ADS  MathSciNet  Google Scholar 

  17. Holden H., Raynaud X. (2006) A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. DiscreteContin. Dyn. Syst. 14, 505–523

    MathSciNet  Google Scholar 

  18. Lenells J. (2005) Conservation laws of the Camassa–Holm equation. J. Phys. A 38, 869–880

    Article  ADS  MathSciNet  Google Scholar 

  19. Johnson R.S. (2002) Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82

    Article  ADS  MathSciNet  Google Scholar 

  20. McKean H.P (2003) Fredholm determinants and the Camassa–Holm hierarchy. Comm. Pure Appl. Math. 56, 638–680

    Article  MathSciNet  Google Scholar 

  21. Wahlen, E. On the peakon-antipeakon interaction. Dyn. Contin. Discrete. Impuls. Syst, to appear

  22. Xin Z., Zhang, P. On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 (2000)

    Google Scholar 

  23. Xin Z., Zhang P. (2002) On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. Partial Differential Equations 27, 1815–1844

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressan, A., Constantin, A. Global Conservative Solutions of the Camassa–Holm Equation. Arch Rational Mech Anal 183, 215–239 (2007). https://doi.org/10.1007/s00205-006-0010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0010-z

Keywords

Navigation