Skip to main content

Quasi-linear equations of evolution, with applications to partial differential equations

  • Survey Papers
  • Conference paper
  • First Online:
Spectral Theory and Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 448))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Springer 1961.

    Google Scholar 

  2. K. Yosida, Functional Analysis, Springer 1971 (Third Edition).

    Google Scholar 

  3. S. G. Krein, Linear differential equations in a Banach space, Izdat Nauka, Moscow 1967.

    Google Scholar 

  4. A. Friedman, Partial differential equations, Holt, Rinehart and Winston 1969.

    Google Scholar 

  5. R. W. Carroll, Abstract methods in partial differential equations, Harper and Row 1969.

    Google Scholar 

  6. A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Lecture Note 10, University of Maryland 1974.

    Google Scholar 

  7. T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sec. I, Vol. 17 (1970), 241–258.

    MathSciNet  MATH  Google Scholar 

  9. T. Kato, Linear evolution equations of "hyperbolic" type, II, J. Math. Soc. Japan 25 (1973), 648–666.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Revised Edition, Amer. Math. Soc. 1957.

    Google Scholar 

  11. T. Kato, Perturbation theory for linear operators, Springer 1966.

    Google Scholar 

  12. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, to appear.

    Google Scholar 

  13. K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, to appear.

    Google Scholar 

  15. A. E. Fischer and J. E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic systems, I, Comm. Math. Phys. 28 (1972), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Sjöberg, On the Korteweg-de Vries equations: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Mukasa and R. Iino, On the global solution for the simplest generalized Korteweg-de Vries equation, Math. Japonicae 14 (1969), 75–83.

    MathSciNet  MATH  Google Scholar 

  18. Y. Kametaka, Korteweg-de Vries equation, Proc. Japan Acad. 45 (1969), 552–555; 556–558; 656–660; 661–665.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Tsutsumi and T. Mukasa, Parabolic regularizations for the generalized Korteweg-de Vries equation, Funkcial. Ekvac. 14 (1971), 89–110.

    MathSciNet  MATH  Google Scholar 

  20. T. E. Dushane, Generalizations of the Korteweg-de Vries equation, Proc. Symp. Pure Math. Vol. 23, Amer. Math. Soc. 1973, pp. 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kato, Nonstationary flows of viscous and ideal fluids in R3, J. Functional Anal. 9 (1972), 296–305.

    Article  MATH  Google Scholar 

  22. K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc, 55 (1944), 132–151.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English Edition, Gordon and Breach 1969.

    Google Scholar 

  24. K. K. Golovkin, Vanishing viscosity in Cauchy’s problem for hydromechanics equations, Trudy Mat. Inst. Steklov. 92 (1966), 31–49; English Translation 33–53.

    MathSciNet  MATH  Google Scholar 

  25. F. J. McGrath, Nonstationary plane flow of viscous and ideal fluids, Arch. Rational Mech. Anal. 27 (1968), 329–348.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. G. Ebin and J. Marsden, Groups of diffemorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970), 102–163.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Swann, The convergence with vanishing viscosity of non-stationary Navier-Stokes flow to ideal flow in R3, Trans. Amer. Math. Soc. 157 (1971), 373–397.

    MathSciNet  MATH  Google Scholar 

  28. L. Gross, The Cauchy problem for the coupled Maxwell and Dirac equations, Comm. Pure Appl. Math. 19 (1966), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. M. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Functional Anal. 13 (1973), 173–184.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Courant and D. Hilbert, Mathods of Mathematical Physics, Vol. II, Interscience Publishers 1962.

    Google Scholar 

  31. J. F. Nash, Le problèm de Cauchy pour les équations différentielles d’un fluide général, Bull. Soc. Math. France 90 (1962), 487–497.

    MathSciNet  Google Scholar 

  32. D. E. Edmunds and L. A. Peletier, Quasilinear parabolic equations, Ann. Scuola Norm. Sup. Pisa 25 (1971), 397–421.

    MathSciNet  MATH  Google Scholar 

  33. R. S. Palais, Fondations of global non-linear analysis, Benjamin 1968.

    Google Scholar 

Download references

Authors

Editor information

William N. Everitt

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Kato, T. (1975). Quasi-linear equations of evolution, with applications to partial differential equations. In: Everitt, W.N. (eds) Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol 448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0067080

Download citation

  • DOI: https://doi.org/10.1007/BFb0067080

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07150-1

  • Online ISBN: 978-3-540-37444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics