Skip to main content
Log in

EMI resisting MOSFET-only voltage reference based on ZTC condition

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Electromagnetic interference (EMI) can significantly degrades the performance of analog circuits, including voltage and current references, especially due to their limited power supply rejection. An EMI resistant MOSFET-only voltage reference is herein proposed, based on the MOSFET zero temperature coefficient (ZTC) vicinity condition. The ZTC condition is analytically derived through a continuous MOSFET model that is valid from weak to strong inversion, also a design methodology is presented. The final circuit is designed in a 130 nm process and occupies around 0.0075 mm\(^{2}\) of silicon area while consuming just 10.3 \(\upmu\)W. Post-layout simulations present a 395 mV reference voltage (\(V_{REF}\)) with a effective temperature coefficient (\(TC_{eff}\)) of 146 ppm/°C, for a temperature range from −55 to +125 °C. A 4 dBm (1 \(V_{pp}\) amplitude) EMI source injected into the power supply, according to direct power injection standard [1], results in a maximum DC Shift and peak-to-peak ripple of −1.7 % and 35.8 m\(V_{pp}\), respectively. The proposed voltage reference has already been fabricated and is under preliminary measurements, presenting a maximum variation of 21 mV for a 600 mV minimum supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. IEC 62132-4:2006, Integrated circuits—Measurement of electromagnetic immunity 150 kHz to 1 GHz, Part 4: Direct RF power injection method, 1st ed. https://webstore.iec.ch/publication/6510.

  2. Binkley, D. M. (2007). Tradeoffs and optimization in analog cmos design. In 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems (pp. 47–60). doi:10.1109/MIXDES.2007.4286119.

  3. Cordova, D., Toledo, P., & Fabris, E. (2014). A low-voltage current reference with high immunity to EMI. In 27th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–6).

  4. Cordova, D., Toledo, P., Klimach, H., Bampi, S., & Fabris, E. (2015a). 0.5 V supply voltage reference based on the MOSFET ZTC condition. In 28th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–7).

  5. Cordova, D., Toledo, P., Klimach, H., Bampi, S., & Fabris, E. (2015b). 0.5 V supply voltage reference based on the MOSFET ZTC condition. In Proceedings of the 28th Symposium on Integrated Circuits and Systems Design (SBCCI ’15) (pp. 9:1–9:7). New York, NY: ACM.

  6. Filanovsky, I., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 876–884.

    Article  Google Scholar 

  7. Giustolisi, G., & Palumbo, G. (2003). A detailed analysis of power-supply noise attenuation in bandgap voltage references. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(2), 185–197.

    Article  Google Scholar 

  8. Klimach, H., Liraneto Torres Costa, A., Fernandes Cortinhas Monteiro, M., & Bampi, S. (2013). A resistorless switched bandgap voltage reference with offset cancellation. In 26th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–5).

  9. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474. doi:10.1109/JSSC.2010.2092997.

    Article  Google Scholar 

  10. Makri, N., & Bucher, M. (2012). Temperature scaling of CMOS analog design parameters. In 16th IEEE Mediterranean Electrotechnical Conference (MELECON) (pp. 187–190).

  11. Mattia, O., Klimach, H., & Bampi, S. (2014a). 0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference. In IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 479–482).

  12. Mattia, O., Klimach, H., & Bampi, S. (2014b). 0.9 V, 5 nW, 9 ppm/°C resistorless sub-bandgap voltage reference in 0.18 μm CMOS. In IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS) (pp. 1–4).

  13. Mattia, O. E., Klimach, H., & Bampi, S. (2014). 2.3 ppm/°C 40 nW MOSFET-only voltage reference. In Proceedings of the 2014 International Symposium on Low Power Electronics and Design (ISLPED ’14) (pp. 215–220). New York, NY: ACM.

  14. Mattia, O. E., Klimach, H., & Bampi, S. (2015). Sub-1 V supply 5 nW 11 ppm/°C resistorless sub-bandgap voltage reference. Analog Integrated Circuits and Signal Processing, 85(1), 17–25.

    Article  Google Scholar 

  15. Orietti, E., Montemezzo, N., Buso, S., Meneghesso, G., Neviani, A., & Spiazzi, G. (2008). Reducing the EMI susceptibility of a Kuijk bandgap. IEEE Transactions on Electromagnetic Compatibility, 50(4), 876–886. doi:10.1109/TEMC.2008.2004581.

    Article  Google Scholar 

  16. Pretelli, A., Richelli, A., Colalongo, L., & Kovcs-Vajna, Z. M. (2006). Reduction of EMI susceptibility in CMOS bandgap reference circuits. IEEE Transactions on Electromagnetic Compatibility, 48(4), 760–765. doi:10.1109/TEMC.2006.884545.

    Article  Google Scholar 

  17. Redoute, J., & Steyaert, M. (2010a). EMC of analog integrated circuits. New York: Springer.

    Book  Google Scholar 

  18. Redoute, J., & Steyaert, M. (2010b). Kuijk bandgap voltage reference with high immunity to EMI. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(2), 75–79.

    Article  MathSciNet  Google Scholar 

  19. Redoute, J. M., & Steyaert, M. (2005). Current mirror structure insensitive to conducted EMI. Electronics Letters, 41(21), 1145–1146.

    Article  Google Scholar 

  20. Schneider, C., & Galup-Montoro, C. (2010). CMOS analog design using all-region MOSFET modeling (1st ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  21. Sze, M. (1981). Physics of semiconductor device. Hoboken: Wiley.

    Google Scholar 

  22. Toled, P., Klimach, H., Cordova, D., Bampi, S., & Fabris, E. (2014). Self-biased CMOS current reference based on the ZTC operation condition. In 27th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1–7)

  23. Toledo, P., Klimach, H., Cordova, D., Bampi, S., & Fabris, E. (2015a). CMOS transconductor analysis for low temperature sensitivity based on ZTC MOSFET condition. In Proceedings of the 28th Symposium on Integrated Circuits and Systems Design (SBCCI ’15) (pp 32:1–32:7). New York, NY: ACM.

  24. Toledo, P., Klimach, H., Cordova, D., Bampi, S., & Fabris, E. (2015b). Resistorless switched-capacitor current reference based on the MOSFET ZTC condition. In IEEE 6th Latin American Symposium on Circuits Systems (LASCAS) (pp. 1–4).

  25. Ueno, K., Hirose, T., Asai, T., & Amemiya, Y. (2009). A 300 nW, 15 ppm/°C, 20 ppm/V cmos voltage reference circuit consisting of subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 44(7), 2047–2054. doi:10.1109/JSSC.2009.2021922.

    Article  Google Scholar 

  26. Vita, G. D., & Iannaccone, G. (2007). A sub-1-V, 10 ppm/°C, nanopower voltage reference generator. IEEE Journal of Solid-State Circuits, 42(7), 1536–1542. doi:10.1109/JSSC.2007.899077.

    Article  Google Scholar 

  27. Widlar, R. (1971). New developments in IC voltage regulators. IEEE Journal of Solid-State Circuits, 6(1), 2–7.

    Article  Google Scholar 

  28. Yang, S., Mak, P. I., Martins, R. P. (2014). A 104 uW EMI-resisting bandgap voltage reference achieving -20 db PSRR, and 5 DC shift under a 4 d Bm EMI level. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (pp. 57–60).

Download references

Acknowledgments

This work was partially supported by CNPq, CAPES, CEITEC and by IC-Brazil Program and MOSIS for access to chip fabrication services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cordova.

Appendices

Appendix 1 \(\phi _{t}\) Thermal Sensitivity

Knowing that \(\phi _{t}=\frac{kT}{q}\) [21], its derivative with respect to T is then

$$\frac{\partial \phi _{t}}{\partial T} = \frac{k}{q}$$
(58)

Multiplying both numerator and denominator by temperature (T),

$$\frac{\partial \phi _{t}}{\partial T} = \frac{k}{q} \left( \frac{T}{T} \right) = \frac{\phi _{t}}{T}$$
(59)

Appendix 2 \(\mu (T)\) Thermal Sensitivity

From Eq. (8) and repeated below, the low-field mobility dependence on temperature is given by

$$\mu (T) = \mu (T_0) \left( \frac{T}{T_0} \right) ^{\alpha _{\mu }}$$
(60)

if one differentiates with respect to temperature, we get

$$\frac{\partial \mu }{\partial T} = \frac{\partial }{\partial T}\left( \mu (T_0) \left( \frac{T}{T_0} \right) ^{\alpha _{\mu }} \right) = \frac{\mu (T_0)}{(T_0)^{\alpha _{\mu }}} \frac{\partial }{\partial T}(T)^{\alpha _{\mu }}$$
(61)

As \(\frac{\partial }{\partial x}(x^{a}) = a x^{a-1}\), we get

$$\frac{\partial \mu }{\partial T} = \frac{\alpha _{\mu }\mu (T_0)}{(T_0)^{\alpha _{\mu }}} (T)^{\alpha _{\mu }-1}$$
(62)

Multiplying both numerator and denominator by temperature (T),

$$\frac{\partial \mu }{\partial T} = \frac{\alpha _{\mu }\mu (T_0)}{(T_0)^{\alpha _{\mu }}} (T)^{\alpha _{\mu }-1} \frac{T}{T} = \frac{\alpha _{\mu }}{T} \underbrace{ \mu (T_0) \left( \frac{T}{T_0} \right) ^{\alpha _{\mu }}}_{ \mu (T) }$$
(63)

Then,

$$\frac{\partial \mu }{\partial T} = \frac{\mu \alpha _{\mu }}{T}$$
(64)

Appendix 3 \(\phi _{t}\) Second Order Thermal Sensitivity

Knowing that \(\phi _{t}^2= \left( \frac{kT}{q} \right) ^2\) [21], then its derivative with respect to T is

$$\frac{\partial \phi _{t}^2}{\partial T} = \left( \frac{k}{q} \right) ^2 2T$$
(65)

Multiplying both numerator and denominator by temperature (T),

$$\frac{\partial \phi _{t}^2}{\partial T} = \left( \frac{k}{q} \right) ^2 2T \left( \frac{T}{T} \right) = \left( \frac{2}{T} \right) \underbrace{ \left( \frac{kT}{q} \right) ^2 }_{ \phi _t^2}$$
(66)

Then,

$$\frac{ \partial \phi _t^2}{ \partial T} = \frac{2}{T}\phi _t^2$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordova, D., Toledo, P., Klimach, H. et al. EMI resisting MOSFET-only voltage reference based on ZTC condition. Analog Integr Circ Sig Process 89, 45–59 (2016). https://doi.org/10.1007/s10470-016-0766-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0766-5

Keywords

Navigation