Skip to main content
Log in

Sub 1-V supply voltage-reference based on mutual temperature cancellation of VT and VTH

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel non-bandgap CMOS voltage reference with sub one-volt power supply is proposed and simulated in 0.18 μm standard CMOS technology. Thermal voltage obtained from ∆VBE with positive and threshold voltage of a nMOS transistor with negative temperature coefficient are utilized to achieve a stable-temperature voltage reference. A current proportional-to- threshold voltage and a current proportional-to-absolute-temperature are used to produce positive and negative temperature coefficient parts. The reference voltage is obtained from the proper combination of these two parts. The nominal output voltage reference is about 0.5-V with the temperature coefficient of 36 ppm/ °C across a temperature range of 0–120 °C at 0.9-V of supply. The power supply noise attenuation of 84 dB is achieved without any filtering capacitor below 15 Hz at 1-V of Vdd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, K., Lande, T. S., & Hafliger, P. (2015). A sub-μW bandgap reference circuit with an inherent curvature-compensation property. IEEE Transactions on Circuits and System_I Regular Papers, 62(1), 1–9. https://doi.org/10.1109/tcsi.2014.2340553.

    Article  Google Scholar 

  2. Kazeminia, S., Hadidi, K., & Khoei, A. (2014). Reanalyzing the basic bandgap reference voltage circuit considering thermal dependence of bandgap energy. Analog Integr Circuit Signal Process, 79, 141–147. https://doi.org/10.1007/s10470-013-0248-y.

    Article  Google Scholar 

  3. Zhou, Z. K., Zhu, P. S., Shi, Y., Wang, H. Y., Ma, Y. Q., Xu, X., et al. (2012). A CMOS voltage reference based on mutual compensation of Vtn and Vtp. IEEE Journal of Transaction on Circuits and System_II, Express Brief, 59(6), 341–345. https://doi.org/10.1109/tcsii.2012.2195065.

    Article  Google Scholar 

  4. Wang, Y., Zhu, Z., Yao, J., & Yang, Y. (2015). A 0.45-V, 14.6-nW CMOS subthreshold voltage reference with no resistors and no BJTs. IEEE Journal of Transactions on Circuits and SystemII Express Brief, 62(7), 621–625. https://doi.org/10.1109/tcsii.2015.2415292.

    Article  Google Scholar 

  5. Jiang, J., Shu, W., & Chang, J. S. (2017). A 56 ppm/OC temperature coefficient, 87-dB PSRR, Sub-1-V voltage reference in 65-nm CMOS exploiting the zero-temperature-coefficient point. IEEE Journal of Solid-State Circuits, 52(3), 623–633. https://doi.org/10.1109/jssc.2016.2627544.

    Article  Google Scholar 

  6. Wenger, Y., & Meinerzhagen, B. (2019). Low-voltage current and voltage reference design based on the MOSFET ZTC effect. IEEE Transactions on Circuits and System_I, Regular Papers, 66(9), 3445–3456. https://doi.org/10.1109/tcsi.2019.2925266.

    Article  Google Scholar 

  7. Azimi Dastgerdi, M., Habibi, M., & Dolatshahi, M. (2019). A novel two stage cross coupled architecture for low voltage low power voltage reference generator. Analog Integrated Circuit Signal Process, 99, 393–402. https://doi.org/10.1007/s10470-018-1379-y.

    Article  Google Scholar 

  8. Zhou, Z., Cao, J., Wang, Y., et al. (2019). A nanoscale low-power resistorless voltage reference with high PSRR. Nanoscale Research Letter, 14(33), 1. https://doi.org/10.1186/s11671-019-2864-7.

    Article  Google Scholar 

  9. Fakharyan, I., Ehsanian, M., & Hayati, H. (2019). A 09-V supply, 162nW, fully MOSFET resistorless bandgap reference using sub-threshold operation. Analog Integrated Circuits Signal Processing. https://doi.org/10.1007/s10470-019-01521-y.

    Article  Google Scholar 

  10. Mattia, O. E., Klimach, H., & Bampi, S. (2015). Sub-1 V supply 5 nW 11 ppm/°C resistorless sub-bandgap voltage reference. Analog Integrated Circuits Signal and Processing, 85, 17–25. https://doi.org/10.1007/s10470-015-0582-3.

    Article  Google Scholar 

  11. Zhou, Z., et al. (2013). A resistorless CMOS voltage reference based on mutual compensation of VT and VTH. IEEE Transactions on Circuits and Systems_II: Express Briefs, 60(9), 582–586. https://doi.org/10.1109/tcsii.2013.2268639.

    Article  Google Scholar 

  12. Wang, B., Law, M. K., & Bermak, A. (2015). A precision CMOS voltage reference exploiting silicon bandgap narrowing effect. IEEE Transactions on Electron Devices, 62(7), 2128–2135. https://doi.org/10.1109/ted.2015.2434495.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rashtian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashtian, M. Sub 1-V supply voltage-reference based on mutual temperature cancellation of VT and VTH. Analog Integr Circ Sig Process 105, 477–482 (2020). https://doi.org/10.1007/s10470-020-01704-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01704-y

Keywords

Navigation