Skip to main content
Log in

Invariant affine connections on odd-dimensional spheres

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A Riemann–Cartan manifold is a Riemannian manifold endowed with an affine connection which is compatible with the metric tensor. This affine connection is not necessarily torsion free. Under the assumption that the manifold is a homogeneous space, the notion of homogeneous Riemann–Cartan space is introduced in a natural way. The paper is focused on the case of the odd-dimensional spheres \(\mathbb S^{2n+1}\) endowed with their canonical Riemannian round metrics and viewed as homogeneous spaces of the special unitary groups. The classical Nomizu’s Theorem on invariant connections has permitted to obtain an algebraical description of all the connections which turn the spheres \(\mathbb S^{2n+1}\) into homogeneous Riemann–Cartan spaces. The expressions of such connections as covariant derivatives are given by means of several invariant tensors: the ones of the usual Sasakian structure of the sphere; an invariant 3-differential form coming from a 3-Sasakian structure on \(\mathbb S^7\); and the involved ones in the almost contact metric structure of \(\mathbb S^5\) provided by its natural embedding into the nearly Kähler manifold \(\mathbb S^6\). Furthermore, the invariant connections sharing geodesics with the Levi-Civita one have also been completely described. Finally, \(\mathbb S^3\) and \(\mathbb S^7\) are characterized as the unique odd-dimensional spheres which admit nontrivial invariant connections satisfying an Einstein-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our convention on the sign is \(R(X,Y)Z=\nabla _{X} \nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{[X,Y]}Z\).

References

  1. Agricola, I.: Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory. Commun. Math. Phys. 232, 535–563 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agricola, I.: Nonintegrable geometries, torsion, and holonomy. In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, pp. 277–346. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16. European Mathematical Society, Zürich (2010)

  3. Agricola, I., Ferreira, A.C.: Einstein manifolds with skew-torsion. Q. J. Math. 65, 717–741 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agricola, I., Ferreira, A.C., Friedrich, T.: The classification of naturally reductive homogeneous spaces in dimensions \(n\le 6\). Differ. Geom. Appl. 39, 59–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agricola, I., Friedrich, T.: 3-Sasakian manifolds in dimension 7, their spinors and \(G_2\)-structures. J. Geom. Phys. 60, 326–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agricola, I., Friedrich, T.: A note on flat metric connections with antisymmetric torsion. Differ. Geom. Appl. 28, 480–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benito, P., Draper, C., Elduque, A.: On some algebras related to simple Lie triple systems. J. Algebra 219, 234–254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Besse, A.L.: Einstein Manifolds. A Series of Modern Surveys in Mathematics. Springer, Berlin (1986)

  9. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203. Birkhäuser, Boston (2002)

  10. Bobieński, M., Nurowski, P.: Irreducible \(SO(3)\) geometry in dimension five. J. Reine Angew. Math. 605, 51–93 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Bryant, R.: On the geometry of almost complex 6-manifolds. Asian J. Math. 10, 561–605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cartan, É.: Les récentes généralisations de la notion d’espace. Bull. Sci. Math. 48, 294–320 (1924)

    MATH  Google Scholar 

  13. Cartan, É., Schouten, J.A.: On Riemannian manifolds admitting an absolute parallelism. Proc. Amst. 29, 933–946 (1926)

    MATH  Google Scholar 

  14. Chrysikos, I.: Invariant connections with skew-torsion and \(\nabla \)-Einstein manifolds. J. Lie Theory 26(1), 011–048 (2016)

  15. Draper, C., Palomo, F.J.: Homogeneous Riemann–Cartan spheres. Pure and Applied Differential Geometry: In Memory of Franki Dillen, PADGE 2012, pp. 126–134 (2013)

  16. Draper, C., Ortega, M., Palomo, F.J.: Einstein with skew-torsion 3-Sasakian spheres (preprint)

  17. Elduque, A.: Reductive homogeneous spaces and nonassociative algebras. Notes of a course given at a CIMPA research school, held in Marrakech (April 13–24, 2015) (preprint). arXiv:1503.03227v1

  18. Elduque, A., Myung, H.C.: The reductive pair \((B_3, G_2)\) and affine connections on \(S^7\). J. Pure Appl. Algebra 86, 155–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elduque, A., Myung, H.C.: Color algebras and affine connections on \(S^6\). J. Algebra 149, 234–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Falcitelli, M., Ianus, S., Pastore, A.M.: Riemannian Submersions and Related Topics. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  21. Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6, 303–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gordeeva, I.A., Pan’zhenskiĭ, V.I., Stepanov, S.E.: Riemann–Cartan manifolds. J. Math. Sci. 169, 342–361 (2010)

    Article  MATH  Google Scholar 

  23. Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465–504 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, vol. 9. Springer, New-York (1978)

  25. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, II. Wiley Classics Library, Princeton (1969)

  26. Kowalski, O., Vanhecke, L.: Classification of five-dimensional naturally reductive spaces. Math. Proc. Camb. Philos. Soc. 97, 445–463 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Laquer, H.T.: Invariant affine connections on Lie groups. Trans. Am. Math. Soc. 331, 541–551 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math. 76, 33–65 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olmos, C., Reggiani, S.: The skew-torsion holonomy theorem and naturally reductive spaces. J. Reine Angew. Math. 664, 29–53 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Onishchik, A.L.: Lectures on Real Semisimple Lie Algebras and Their Representations. European Mathematical Society (EMS). ESI Lectures in Mathematics and Physics, Zürich (2004)

  31. Poor, W.A.: Differential Geometric Structures. Dover Publications, INC, New York (2007) [Corrected republication of the work published by McGraw-Hill (1981)]

  32. Stadtmüller, C.: Adapted connections on metric contact manifolds. J. Geom. Phys. 62, 2170–2187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds. London Mathematical Society, Lecture Notes Series, vol. 83. Cambridge University Press, Cambridge (1983)

  34. Warner, F.: Foundations of Differentiable Manifolds and Lie Groups. Scott-Foresman, Glenview (1971)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Alberto Elduque for his nice and comprehensive notes about Nomizu’s Theorem (essentially compiled in [17]), and for some valuable hints on Lemma 5.8. They also thank the referee for his/her interesting and subtle suggestions which have contributed to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Palomo.

Additional information

C. Draper was supported by the Spanish MEC Grant MTM2013-41208-P and by the Junta de Andalucía Grants FQM-336, FQM-7156, with FEDER funds.

A. Garvín was supported by the Spanish MEC Grant MTM2013-41768-P and by the Junta de Andalucía Grant FQM-213, with FEDER funds.

F. J. Palomo Supported by the Spanish MEC Grant MTM2013-47828-C2-2-P and by the Junta de Andalucía Grant FQM-4496, with FEDER funds.

Appendix

Appendix

Here is a summary of the results of this work:

Invariant connections on odd-dimensional spheres

 

Invariant

7

\(\leftrightarrow \langle \{\alpha _{1},\, \alpha _\mathbf{{i}},\,\beta _{1},\,\beta _\mathbf{{i}},\,\gamma _{1},\, \gamma _\mathbf{{i}},\,\delta _1\}\rangle \)

\(\mathbb S^{2n+1}\)

Metric

3

\(\nabla ^{g}_{X}Y+s_1(\Phi (X,Y)\,\xi +\eta (Y)\psi (X)) + s_2(g(X,Y)\,\xi -\eta (Y)X)+s_3\eta (X)\psi (Y) \)

 

Skew-torsion

1

\( \nabla ^{g}_{X}Y+s_1T^{c}(X,Y)\)

 

\(\nabla \)-Einstein

Point

\(\nabla ^{g}_{X}Y\)

 

Invariant

9

\(\leftrightarrow \langle \{\alpha _{1},\, \alpha _\mathbf{{i}},\,\beta _{1},\,\beta _\mathbf{{i}},\,\gamma _{1},\, \gamma _\mathbf{{i}},\,\varepsilon _{1},\,\varepsilon _\mathbf{{i}},\,\delta _1\}\rangle \)

\(\mathbb S^{7}\)

Metric

5

\( \nabla ^{g}_{X}Y+s_1\, (\Phi _1(X,Y)\,\xi _1+\eta _1(Y)\psi _1(X) ) +s_2\, \eta _1(X)\psi _1(Y)+ s_3\, \nabla ^{g}_{X}\psi _1 + s_4 \, \Theta (X,Y) +s_5 \, \tilde{\Theta }(X,Y) \)

 

Skew-torsion

3

\( \nabla ^{g}_{X}Y+ s_1 T^{c}(X,Y) + s_4 \, \Theta (X,Y) + s_5 \, \tilde{\Theta }(X,Y)\)

 

\(\nabla \)-Einstein

Cone

\(s_4^2+s_5^2=s_1^2\)

 

Invariant

13

\(\leftrightarrow \langle \{\alpha _{1},\, \alpha _\mathbf{{i}},\,\beta _{1},\,\beta _\mathbf{{i}},\,\gamma _{1},\, \gamma _\mathbf{{i}},\,\hat{\alpha }_{1},\, \hat{\alpha }_\mathbf{{i}},\,\hat{\beta }_{1},\,\hat{\beta }_\mathbf{{i}},\,\hat{\gamma }_{1},\, \hat{\gamma }_\mathbf{{i}},\,\delta _1\}\rangle \)

\(\mathbb S^{5}\)

Metric

7

\(\nabla ^{g}_{X}Y+s_1(\Phi (X,Y)\,\xi +\eta (Y)\psi (X)) + s_2\eta (X)\psi (Y)+ s_3(\Phi (\widehat{\psi }(X),Y)\,\xi +\eta (Y)\psi (\widehat{\psi }(X))) +s_4\eta (X)\psi (\widehat{\psi }(Y)) +s_5\eta (X)\widehat{\psi }(Y)+ s_6(g(\widehat{\psi }(X),Y)\,\xi -\eta (Y)\widehat{\psi }(X))+s_7 \nabla ^{g}_{X}\psi \)

 

Skew-torsion

3

\( \nabla ^{g}_{X}Y +s_1\big (\Phi (\widehat{\psi }(X),Y)\,\xi -\eta (X)\psi (\widehat{\psi }(Y))+\eta (Y)\psi (\widehat{\psi }(X))\big )+s_2 T^{c}(X,Y) +s_3\big ( g(\widehat{\psi }(X),Y)\,\xi +\eta (X)\widehat{\psi }(Y)-\eta (Y)\widehat{\psi }(X)\big )\)

 

\(\nabla \)-Einstein

Point

\(\nabla ^{g}_{X}Y\)

 

Invariant

27

\( \nabla ^{g}_{X}Y+\sum s_{ijk}E_i^{\flat }(X)E_j^{\flat }(Y)E_k \)

\(\mathbb S^{3}\)

Metric

9

\( \nabla ^{g}_{X}Y+\sum s_{ij}E_i^{\flat }(X)(E_{j}^{\flat }(Y)E_{j+1}-E_{j+1}^{\flat }(Y)E_{j} )\)

 

Skew-torsion

1

\( \nabla ^{g}_{X}Y+s_1T^{c}(X,Y)\)

 

\(\nabla \)-Einstein

Line

\( \nabla ^{g}_{X}Y+s_1 T^{c}(X,Y)\),

where \(T^{c}\) denotes the torsion tensor of the characteristic connection of the Sasakian manifold given in Example 4.11(iii).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Draper, C., Garvín, A. & Palomo, F.J. Invariant affine connections on odd-dimensional spheres. Ann Glob Anal Geom 49, 213–251 (2016). https://doi.org/10.1007/s10455-015-9489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-015-9489-6

Keywords

Mathematics Subject Classification

Navigation