Skip to main content
Log in

Tammes Problem and Contact Number for Spheres in Spaces of Constant Curvature

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem on the contact number of a sphere in a three-dimensional hyperbolic space and a three-dimensional spherical space. This problem is equivalent to the Tammes problem on the maximal value of minimums of spherical distances for an N-point set on the unit sphere of the Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Anstreicher, “The thirteen spheres: A new proof,” Discr. Comput. Geom., 31, 613–625 (2004).

    Article  MathSciNet  Google Scholar 

  2. C. Bachoc and F. Vallentin, “New upper bounds for kissing numbers from semidefinite programming,” Discr. Comput. Geom., 21, 909–924 (2008).

    MathSciNet  Google Scholar 

  3. K. Böröczky, “The problem of Tammes for n = 11,” Stud. Sci. Math. Hungar., 18, 165–171 (1983).

    MathSciNet  Google Scholar 

  4. K. Böröczky, “The Newton–Gregory problem revisited,” in: Discrete Geometry (A. Bezdek, ed.), Marcel Dekker (2003), pp. 103–110.

  5. K. Böröczky and L. Szabó, “Arrangements of 13 points on a sphere,” in: Discrete Geometry (A. Bezdek, ed.), Marcel Dekker (2003), pp. 111–184.

  6. P. Boyvalenkov, S. Dodunekov, and O. R.Musin, “A survey on the kissing number,” Serd. Math. J., 38, 507–522 (2012).

    MathSciNet  Google Scholar 

  7. L. Danzer, Endliche Punktmengen auf der 2-Sphäre mit möglichst grossen Minimalabstand, Universit ät Göttingen (1963).

  8. L. Danzer, “Finite point-sets on 𝕊2 with minimum distance as large as possible,” Discr. Math., 60, 3–66 (1986).

    Article  MathSciNet  Google Scholar 

  9. L. Fejes Tóth, “Über die Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems,” Jber. Deutsch. Math. Verein., 53, 66–68 (1943).

  10. L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und in Raum, Springer-Verlag, Berlin (1953).

  11. A. V. Kostin, “Shadow problem in the Lobachevsky space,” Ukr. Mat. Zh., 70, No. 11, 1525–1532 (2018).

    Google Scholar 

  12. A. V. Kostin and N. N. Kostina, “An interpretation of Casey’s theorem and of its hyperbolic analog,” Sib. Elektron. Mat. Izv., 13, 242–251 (2016).

    MathSciNet  Google Scholar 

  13. V. I. Levenshtein, “On bounds for packing in n-dimensional Euclidean space,” Sov. Math. Dokl., 20, No. 2, 417–421 (1979).

    Google Scholar 

  14. H. Maehara, “Isoperimetric theorem for spherical polygons and the problem of 13 spheres,” Ryukyu Math. J., 14, 1770–1778 (2001).

    MathSciNet  Google Scholar 

  15. H. Maehara, “The problem of thirteen spheres - a proof for undergraduates,” Eur. J. Combin., 28, 41–57 (2007).

    Article  MathSciNet  Google Scholar 

  16. O. R. Musin, “The kissing problem in three dimensions,” Discr. Comput. Geom., 35, 375–384 (2006).

    Article  MathSciNet  Google Scholar 

  17. O. R. Musin, “The kissing problem in four dimensions,” Ann. Math., 168, 1–32 (2008).

    Article  MathSciNet  Google Scholar 

  18. O. R. Musin and A. C. Tarasov, “The strong thirteen spheres problem,” Discr. Comput. Geom., 48, 128–141 (2012).

    Article  MathSciNet  Google Scholar 

  19. O. R. Musin and A. C. Tarasov, The Tammes problem for N = 14 .

  20. A. M. Odlyzko and N. J. A. Sloane, “New bounds on the number of unit spheres that can touch a unit sphere in n dimensions,” J. Combin. Th. A., 26, 210–214 (1979).

    Article  MathSciNet  Google Scholar 

  21. F. Pfender and G. M. Ziegler, “Kissing numbers, sphere packings, and some unexpected proofs,” Not. Am. Math. Soc., 51, 873–883 (2004).

    MathSciNet  Google Scholar 

  22. R. M. Robinson, “Arrangement of 24 circles on a sphere,” Math. Ann., 144, 14–48 (1961).

    Article  Google Scholar 

  23. K. Sch¨utte and B. L. van der Waerden, “Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand 1 Platz?,” Math. Ann., 123, 96–124 (1951).

  24. K. Sch¨utte and B. L. van der Waerden, “Das Problem der dreizehn Kugeln,” Math. Ann., 125, 325–334 (1953).

  25. R. M. L. Tammes, “On the origin number and arrangement of the places of exits on the surface of pollen-grains,” Rec. Trv. Bot. Neerl., 27, 1–84 (1930).

    Google Scholar 

  26. V. A. Zinoviev and T. Ericson, “New lower bounds for contact numbers in small dimensions,” Problems Inform. Transmission, 35, No. 4, 287–294 (1999).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kostin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 182, Proceedings of the International Conference “Classical and Modern Geometry” Dedicated to the 100th Anniversary of Professor V. T. Bazylev. Moscow, April 22-25, 2019. Part 4, 2020.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostin, A.V., Kostina, N.N. Tammes Problem and Contact Number for Spheres in Spaces of Constant Curvature. J Math Sci 277, 750–755 (2023). https://doi.org/10.1007/s10958-023-06882-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06882-4

Keywords and phrases

AMS Subject Classification

Navigation